Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12,…
Annals of mathematics, Tome 160 (2004) no. 2, pp. 465-491.

Voir la notice de l'article provenant de la source Annals of Mathematics website

The uniform spanning forest (USF) in $\mathbb{Z}^d$ is the weak limit of random, uniformly chosen, spanning trees in $[-n,n]^d$. Pemantle [11] proved that the USF consists a.s. of a single tree if and only if $d \le 4$. We prove that any two components of the USF in $\mathbb{Z}^d$ are adjacent a.s. if $5 \le d \le 8$, but not if $d \ge 9$. More generally, let $N(x,y)$ be the minimum number of edges outside the USF in a path joining $x$ and $y$ in $\mathbb{Z}^d$. Then \[ \max\bigl\{N(x,y): x,y\in\mathbb{Z}^d\bigr\} = \bigl\lfloor (d-1)/4 \bigr\rfloor \hbox{ a.s. } \] The notion of stochastic dimension for random relations in the lattice is introduced and used in the proof.
DOI : 10.4007/annals.2004.160.465

Itai Benjamini 1 ; Harry Kesten 2 ; Yuval Peres 3 ; Oded Schramm 4

1 Department of Mathematics, The Weizmann Institute of Science, 76100 Rehovot, Israel
2 Department of Mathematics, Cornell University, Ithaca, NY 14853, United States
3 Department of Mathematics, University of California, Berkeley, Berkeley, CA 94702, United States
4 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, United States
@article{10_4007_annals_2004_160_465,
     author = {Itai Benjamini and Harry Kesten and Yuval Peres and Oded Schramm},
     title = {Geometry of the uniform spanning forest: {Transitions} in dimensions 4, 8, 12,{\textellipsis}},
     journal = {Annals of mathematics},
     pages = {465--491},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2004},
     doi = {10.4007/annals.2004.160.465},
     mrnumber = {2123930},
     zbl = {1071.60006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.465/}
}
TY  - JOUR
AU  - Itai Benjamini
AU  - Harry Kesten
AU  - Yuval Peres
AU  - Oded Schramm
TI  - Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12,…
JO  - Annals of mathematics
PY  - 2004
SP  - 465
EP  - 491
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.465/
DO  - 10.4007/annals.2004.160.465
LA  - en
ID  - 10_4007_annals_2004_160_465
ER  - 
%0 Journal Article
%A Itai Benjamini
%A Harry Kesten
%A Yuval Peres
%A Oded Schramm
%T Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12,…
%J Annals of mathematics
%D 2004
%P 465-491
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.465/
%R 10.4007/annals.2004.160.465
%G en
%F 10_4007_annals_2004_160_465
Itai Benjamini; Harry Kesten; Yuval Peres; Oded Schramm. Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12,…. Annals of mathematics, Tome 160 (2004) no. 2, pp. 465-491. doi : 10.4007/annals.2004.160.465. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.465/

Cité par Sources :