Boundary behavior for groups of subexponential growth
Annals of mathematics, Tome 160 (2004) no. 3, pp. 1183-1210.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this paper we introduce a method for partial description of the Poisson boundary for a certain class of groups acting on a segment. As an application we find among the groups of subexponential growth those that admit nonconstant bounded harmonic functions with respect to some symmetric (infinitely supported) measure $\mu$ of finite entropy $H(\mu)$. This implies that the entropy $h(\mu)$ of the corresponding random walk is (finite and) positive. As another application we exhibit certain discontinuity for the recurrence property of random walks. Finally, as a corollary of our results we get new estimates from below for the growth function of a certain class of Grigorchuk groups. In particular, we exhibit the first example of a group generated by a finite state automaton, such that the growth function is subexponential, but grows faster than $\exp(n^\alpha)$ for any $\alpha\lt 1$. We show that in some of our examples the growth function satisfies $\exp(\frac{n}{\ln^{2+\varepsilon}(n)}) \le v_{G,S}(n) \le \exp(\frac{n}{\ln^{1-\varepsilon}(n)})$ for any $\varepsilon >0$ and any sufficiently large $n$.
DOI : 10.4007/annals.2004.160.1183

Anna Erschler 1

1 UFR de Mathématiques, University of Lille 1, 59655 Villeneuve d'Ascq, France
@article{10_4007_annals_2004_160_1183,
     author = {Anna Erschler},
     title = {Boundary behavior for groups of subexponential growth},
     journal = {Annals of mathematics},
     pages = {1183--1210},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {2004},
     doi = {10.4007/annals.2004.160.1183},
     mrnumber = {2144977},
     zbl = {1089.20025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.1183/}
}
TY  - JOUR
AU  - Anna Erschler
TI  - Boundary behavior for groups of subexponential growth
JO  - Annals of mathematics
PY  - 2004
SP  - 1183
EP  - 1210
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.1183/
DO  - 10.4007/annals.2004.160.1183
LA  - en
ID  - 10_4007_annals_2004_160_1183
ER  - 
%0 Journal Article
%A Anna Erschler
%T Boundary behavior for groups of subexponential growth
%J Annals of mathematics
%D 2004
%P 1183-1210
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.1183/
%R 10.4007/annals.2004.160.1183
%G en
%F 10_4007_annals_2004_160_1183
Anna Erschler. Boundary behavior for groups of subexponential growth. Annals of mathematics, Tome 160 (2004) no. 3, pp. 1183-1210. doi : 10.4007/annals.2004.160.1183. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.1183/

Cité par Sources :