Bertini theorems over finite fields
Annals of mathematics, Tome 160 (2004) no. 3, pp. 1099-1127.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $X$ be a smooth quasiprojective subscheme of $\mathbf{P}^n$ of dimension $m \ge 0$ over $\mathbf{F}_q$. Then there exist homogeneous polynomials $f$ over $\mathbf{F}_q$ for which the intersection of $X$ and the hypersurface $f=0$ is smooth. In fact, the set of such $f$ has a positive density, equal to $\zeta_X(m+1)^{-1}$, where $\zeta_X(s)=Z_X(q^{-s})$ is the zeta function of $X$. An analogue for regular quasiprojective schemes over $\mathbf{Z}$ is proved, assuming the $abc$ conjecture and another conjecture.
DOI : 10.4007/annals.2004.160.1099

Bjorn Poonen 1

1 University of California, Berkeley, Berkeley, CA
@article{10_4007_annals_2004_160_1099,
     author = {Bjorn Poonen},
     title = {Bertini theorems over finite fields},
     journal = {Annals of mathematics},
     pages = {1099--1127},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {2004},
     doi = {10.4007/annals.2004.160.1099},
     mrnumber = {2144974},
     zbl = {1084.14026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.1099/}
}
TY  - JOUR
AU  - Bjorn Poonen
TI  - Bertini theorems over finite fields
JO  - Annals of mathematics
PY  - 2004
SP  - 1099
EP  - 1127
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.1099/
DO  - 10.4007/annals.2004.160.1099
LA  - en
ID  - 10_4007_annals_2004_160_1099
ER  - 
%0 Journal Article
%A Bjorn Poonen
%T Bertini theorems over finite fields
%J Annals of mathematics
%D 2004
%P 1099-1127
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.1099/
%R 10.4007/annals.2004.160.1099
%G en
%F 10_4007_annals_2004_160_1099
Bjorn Poonen. Bertini theorems over finite fields. Annals of mathematics, Tome 160 (2004) no. 3, pp. 1099-1127. doi : 10.4007/annals.2004.160.1099. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.1099/

Cité par Sources :