Uniform bounds for the bilinear Hilbert transforms, I
Annals of mathematics, Tome 159 (2004) no. 3, pp. 889-933.

Voir la notice de l'article provenant de la source Annals of Mathematics website

It is shown that the bilinear Hilbert transforms \[ H_{\alpha,\beta} (f,g)(x) = \text{p.v.}\int_{\mathbf{R}} f(x-\alpha t)g(x-\beta t)\, \frac{dt}{t} \] map $L^{p_1}(\mathbf{R})\times L^{p_2}(\mathbf{R})\to L^p(\mathbf{R})$ uniformly in the real parameters $\alpha,\beta $ when $2 < p_1, p_2 < \infty$ and $1\lt p= \frac{p_1p_2}{p_1+p_2}<2$. Combining this result with the main result in [9], we deduce that the operators $H_{1, \alpha}$ map $L^2(\mathbf{R})\times L^\infty(\mathbf{R})\to L^2(\mathbf{R})$ uniformly in the real parameter $\alpha\in [0,1]$. This completes a program initiated by A. Calderón.
DOI : 10.4007/annals.2004.159.889

Loukas Grafakos 1 ; Xiaochun Li 2

1 Department of Mathematics, University of Missouri, Columbia, MO 65211, United States
2 Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, United States
@article{10_4007_annals_2004_159_889,
     author = {Loukas Grafakos and Xiaochun Li},
     title = {Uniform bounds for the bilinear {Hilbert} transforms, {I}},
     journal = {Annals of mathematics},
     pages = {889--933},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {2004},
     doi = {10.4007/annals.2004.159.889},
     mrnumber = {2113017},
     zbl = {1071.44004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.889/}
}
TY  - JOUR
AU  - Loukas Grafakos
AU  - Xiaochun Li
TI  - Uniform bounds for the bilinear Hilbert transforms, I
JO  - Annals of mathematics
PY  - 2004
SP  - 889
EP  - 933
VL  - 159
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.889/
DO  - 10.4007/annals.2004.159.889
LA  - en
ID  - 10_4007_annals_2004_159_889
ER  - 
%0 Journal Article
%A Loukas Grafakos
%A Xiaochun Li
%T Uniform bounds for the bilinear Hilbert transforms, I
%J Annals of mathematics
%D 2004
%P 889-933
%V 159
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.889/
%R 10.4007/annals.2004.159.889
%G en
%F 10_4007_annals_2004_159_889
Loukas Grafakos; Xiaochun Li. Uniform bounds for the bilinear Hilbert transforms, I. Annals of mathematics, Tome 159 (2004) no. 3, pp. 889-933. doi : 10.4007/annals.2004.159.889. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.889/

Cité par Sources :