On the volume of the intersection of two Wiener sausages
Annals of mathematics, Tome 159 (2004) no. 2, pp. 741-782.

Voir la notice de l'article provenant de la source Annals of Mathematics website

For $a>0$, let $W_1^a(t)$ and $W_2^a(t)$ be the $a$-neighbourhoods of two independent standard Brownian motions in $\mathrm{R}^d$ starting at 0 and observed until time $t$. We prove that, for $d \geq 3$ and $c>0$, \[ \lim_{t \to \infty} \frac{1}{t^{(d-2)/d}} \log P\Big(|W_1^a(ct) \cap W_2^a(ct)| \geq t\Big) = – I_d^{\kappa_a}(c) \] and derive a variational representation for the rate constant $I_d^{\kappa_a}(c)$. Here, $\kappa_a$ is the Newtonian capacity of the ball with radius $a$. We show that the optimal strategy to realise the above large deviation is for $W_1^a(ct)$ and $W_2^a(ct)$ to “form a Swiss cheese”: the two Wiener sausages cover part of the space, leaving random holes whose sizes are of order 1 and whose density varies on scale $t^{1/d}$ according to a certain optimal profile.
DOI : 10.4007/annals.2004.159.741

Michiel van den Berg 1 ; Erwin Bolthausen 2 ; Frank den Hollander 3

1 Department of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
2 Institut für Mathematik, Universität Zürich, 8057 Zürich, Switzerland
3 EURANDOM, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
@article{10_4007_annals_2004_159_741,
     author = {Michiel van den Berg and Erwin Bolthausen and Frank den Hollander},
     title = {On the volume of the intersection of two {Wiener} sausages},
     journal = {Annals of mathematics},
     pages = {741--782},
     publisher = {mathdoc},
     volume = {159},
     number = {2},
     year = {2004},
     doi = {10.4007/annals.2004.159.741},
     mrnumber = {2081439},
     zbl = {1165.60316},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.741/}
}
TY  - JOUR
AU  - Michiel van den Berg
AU  - Erwin Bolthausen
AU  - Frank den Hollander
TI  - On the volume of the intersection of two Wiener sausages
JO  - Annals of mathematics
PY  - 2004
SP  - 741
EP  - 782
VL  - 159
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.741/
DO  - 10.4007/annals.2004.159.741
LA  - en
ID  - 10_4007_annals_2004_159_741
ER  - 
%0 Journal Article
%A Michiel van den Berg
%A Erwin Bolthausen
%A Frank den Hollander
%T On the volume of the intersection of two Wiener sausages
%J Annals of mathematics
%D 2004
%P 741-782
%V 159
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.741/
%R 10.4007/annals.2004.159.741
%G en
%F 10_4007_annals_2004_159_741
Michiel van den Berg; Erwin Bolthausen; Frank den Hollander. On the volume of the intersection of two Wiener sausages. Annals of mathematics, Tome 159 (2004) no. 2, pp. 741-782. doi : 10.4007/annals.2004.159.741. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.741/

Cité par Sources :