Equivariant de Rham torsions
Annals of mathematics, Tome 159 (2004) no. 1, pp. 53-216.

Voir la notice de l'article provenant de la source Annals of Mathematics website

The purpose of this paper is to give an explicit local formula for the difference of two natural versions of equivariant analytic torsion in de Rham theory. This difference is the sum of the integral of a Chern-Simons current and of a new invariant, the \( V \)-invariant of an odd dimensional manifold equipped with an action of a compact Lie group. The \( V \)-invariant localizes on the critical manifolds of invariant Morse-Bott functions.
DOI : 10.4007/annals.2004.159.53

Jean-Michel Bismut 1 ; Sebastian Goette 2

1 Département de Mathématiques, Université Paris-Sud, 91405 Orsay, France
2 NWF 1 Mathematik, Universität Regensburg, 93040 Regensburg, Germany
@article{10_4007_annals_2004_159_53,
     author = {Jean-Michel Bismut and Sebastian Goette},
     title = {Equivariant de {Rham} torsions},
     journal = {Annals of mathematics},
     pages = {53--216},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {2004},
     doi = {10.4007/annals.2004.159.53},
     mrnumber = {2051391},
     zbl = {1094.58013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.53/}
}
TY  - JOUR
AU  - Jean-Michel Bismut
AU  - Sebastian Goette
TI  - Equivariant de Rham torsions
JO  - Annals of mathematics
PY  - 2004
SP  - 53
EP  - 216
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.53/
DO  - 10.4007/annals.2004.159.53
LA  - en
ID  - 10_4007_annals_2004_159_53
ER  - 
%0 Journal Article
%A Jean-Michel Bismut
%A Sebastian Goette
%T Equivariant de Rham torsions
%J Annals of mathematics
%D 2004
%P 53-216
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.53/
%R 10.4007/annals.2004.159.53
%G en
%F 10_4007_annals_2004_159_53
Jean-Michel Bismut; Sebastian Goette. Equivariant de Rham torsions. Annals of mathematics, Tome 159 (2004) no. 1, pp. 53-216. doi : 10.4007/annals.2004.159.53. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.53/

Cité par Sources :