Quasiconformal homeomorphisms and the convex hull boundary
Annals of mathematics, Tome 159 (2004) no. 1, pp. 305-336.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We investigate the relationship between an open simply-connected region $\Omega\subset \mathbb{S}^2$ and the boundary $Y$ of the hyperbolic convex hull in $\mathbb{H}^3$ of $\mathbb{S}^2\setminus\Omega$. A counterexample is given to Thurston’s conjecture that these spaces are related by a 2-quasiconformal homeomorphism which extends to the identity map on their common boundary, in the case when the homeomorphism is required to respect any group of Möbius transformations which preserves $\Omega$. We show that the best possible universal lipschitz constant for the nearest point retraction $r:\Omega\to Y$ is 2. We find explicit universal constants $0 < c_2 < c_1$, such that no pleating map which bends more than $c_1$ in some interval of unit length is an embedding, and such that any pleating map which bends less than $c_2$ in each interval of unit length is embedded. We show that every $K$-quasiconformal homeomorphism $\mathbb{D}^2\to\mathbb{D}^2$ is a $(K,a(K))$-quasi-isometry, where $a(K)$ is an explicitly computed function. The multiplicative constant is best possible and the additive constant $a(K)$ is best possible for some values of $K$.
DOI : 10.4007/annals.2004.159.305

David B. A. Epstein 1 ; Albert Marden 2 ; Vladimir Markovic 1

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
2 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States
@article{10_4007_annals_2004_159_305,
     author = {David B. A. Epstein and Albert Marden and Vladimir Markovic},
     title = {Quasiconformal homeomorphisms and the convex hull boundary},
     journal = {Annals of mathematics},
     pages = {305--336},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {2004},
     doi = {10.4007/annals.2004.159.305},
     mrnumber = {2052356},
     zbl = {1064.30044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.305/}
}
TY  - JOUR
AU  - David B. A. Epstein
AU  - Albert Marden
AU  - Vladimir Markovic
TI  - Quasiconformal homeomorphisms and the convex hull boundary
JO  - Annals of mathematics
PY  - 2004
SP  - 305
EP  - 336
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.305/
DO  - 10.4007/annals.2004.159.305
LA  - en
ID  - 10_4007_annals_2004_159_305
ER  - 
%0 Journal Article
%A David B. A. Epstein
%A Albert Marden
%A Vladimir Markovic
%T Quasiconformal homeomorphisms and the convex hull boundary
%J Annals of mathematics
%D 2004
%P 305-336
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.305/
%R 10.4007/annals.2004.159.305
%G en
%F 10_4007_annals_2004_159_305
David B. A. Epstein; Albert Marden; Vladimir Markovic. Quasiconformal homeomorphisms and the convex hull boundary. Annals of mathematics, Tome 159 (2004) no. 1, pp. 305-336. doi : 10.4007/annals.2004.159.305. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.305/

Cité par Sources :