Semistable sheaves in positive characteristic
Annals of mathematics, Tome 159 (2004) no. 1, pp. 251-276.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove Maruyama’s conjecture on the boundedness of slope semistable sheaves on a projective variety defined over a noetherian ring. Our approach also gives a new proof of the boundedness for varieties defined over a characteristic zero field. This result implies that in mixed characteristic the moduli spaces of Gieseker semistable sheaves are projective schemes of finite type. The proof uses a new inequality bounding slopes of the restriction of a sheaf to a hypersurface in terms of its slope and the discriminant. This inequality also leads to effective restriction theorems in all characteristics, improving earlier results in characteristic zero.
DOI : 10.4007/annals.2004.159.251

Adrian Langer 1

1 Institute of Mathematics, Warsaw University, 02-097 Warszawa, Poland
@article{10_4007_annals_2004_159_251,
     author = {Adrian Langer},
     title = {Semistable sheaves in positive characteristic},
     journal = {Annals of mathematics},
     pages = {251--276},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {2004},
     doi = {10.4007/annals.2004.159.251},
     mrnumber = {2144978},
     zbl = {1080.14014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.251/}
}
TY  - JOUR
AU  - Adrian Langer
TI  - Semistable sheaves in positive characteristic
JO  - Annals of mathematics
PY  - 2004
SP  - 251
EP  - 276
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.251/
DO  - 10.4007/annals.2004.159.251
LA  - en
ID  - 10_4007_annals_2004_159_251
ER  - 
%0 Journal Article
%A Adrian Langer
%T Semistable sheaves in positive characteristic
%J Annals of mathematics
%D 2004
%P 251-276
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.251/
%R 10.4007/annals.2004.159.251
%G en
%F 10_4007_annals_2004_159_251
Adrian Langer. Semistable sheaves in positive characteristic. Annals of mathematics, Tome 159 (2004) no. 1, pp. 251-276. doi : 10.4007/annals.2004.159.251. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.251/

Cité par Sources :