Duality of metric entropy
Annals of mathematics, Tome 159 (2004) no. 3, pp. 1313-1328.

Voir la notice de l'article provenant de la source Annals of Mathematics website

For two convex bodies $K$ and $T$ in $\mathbb{R}^n$, the covering number of $K$ by $T$, denoted $N(K,T)$, is defined as the minimal number of translates of $T$ needed to cover $K$. Let us denote by $K^{\circ}$ the polar body of $K$ and by $D$ the euclidean unit ball in $\mathbb{R}^n$. We prove that the two functions of $t$, $N(K,tD)$ and $N(D, tK^{\circ})$, are equivalent in the appropriate sense, uniformly over symmetric convex bodies $K \subset \mathbb{R}^n$ and over $n \in \mathbb{N}$. In particular, this verifies the duality conjecture for entropy numbers of linear operators, posed by Pietsch in 1972, in the central case when either the domain or the range of the operator is a Hilbert space.
DOI : 10.4007/annals.2004.159.1313

Shiri Artstein 1 ; Vitali Milman 1 ; Stanisław J. Szarek 2

1 School of Mathematical Science, Tel Aviv University, 69461 Tel Aviv, Israel
2 Equipe d’Analyse Fonctionnelle, Université Paris VI, 75252 Paris, France and Department of Mathematics, Case Western Reserve University, Cleveland, OH 44106, United States
@article{10_4007_annals_2004_159_1313,
     author = {Shiri Artstein and Vitali Milman and Stanis{\l}aw J. Szarek},
     title = {Duality of metric entropy},
     journal = {Annals of mathematics},
     pages = {1313--1328},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {2004},
     doi = {10.4007/annals.2004.159.1313},
     mrnumber = {2113023},
     zbl = {1072.52001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.1313/}
}
TY  - JOUR
AU  - Shiri Artstein
AU  - Vitali Milman
AU  - Stanisław J. Szarek
TI  - Duality of metric entropy
JO  - Annals of mathematics
PY  - 2004
SP  - 1313
EP  - 1328
VL  - 159
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.1313/
DO  - 10.4007/annals.2004.159.1313
LA  - en
ID  - 10_4007_annals_2004_159_1313
ER  - 
%0 Journal Article
%A Shiri Artstein
%A Vitali Milman
%A Stanisław J. Szarek
%T Duality of metric entropy
%J Annals of mathematics
%D 2004
%P 1313-1328
%V 159
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.1313/
%R 10.4007/annals.2004.159.1313
%G en
%F 10_4007_annals_2004_159_1313
Shiri Artstein; Vitali Milman; Stanisław J. Szarek. Duality of metric entropy. Annals of mathematics, Tome 159 (2004) no. 3, pp. 1313-1328. doi : 10.4007/annals.2004.159.1313. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.1313/

Cité par Sources :