On the Julia set of a typical quadratic polynomial with a Siegel disk
Annals of mathematics, Tome 159 (2004) no. 1, pp. 1-52.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $0\lt \theta <1$ be an irrational number with continued fraction expansion $\theta=[a_1, a_2, a_3, \ldots]$, and consider the quadratic polynomial $P_\theta : z \mapsto e^{2\pi i \theta} z +z^2$. By performing a trans-quasiconformal surgery on an associated Blaschke product model, we prove that if \[\log a_n = {\mathcal{O}} (\sqrt{n}) \quad \mbox{as}\quad n \to \infty,\] then the Julia set of $P_\theta$ is locally connected and has Lebesgue measure zero. In particular, it follows that for almost every $0\lt \theta < 1$, the quadratic $P_\theta$ has a Siegel disk whose boundary is a Jordan curve passing through the critical point of $P_\theta$. By standard renormalization theory, these results generalize to the quadratics which have Siegel disks of higher periods.
DOI : 10.4007/annals.2004.159.1

C. L. Petersen 1 ; S. Zakeri 2

1 IMFUFA, Roskilde University, Roskilde, Denmark
2 Institute for Mathematical Sciences, Stony Brook University, Stony Brook, NY 11794, United States
@article{10_4007_annals_2004_159_1,
     author = {C. L. Petersen and S. Zakeri},
     title = {On the {Julia} set of a typical quadratic polynomial with a {Siegel} disk},
     journal = {Annals of mathematics},
     pages = {1--52},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {2004},
     doi = {10.4007/annals.2004.159.1},
     mrnumber = {2051390},
     zbl = {1069.37038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.1/}
}
TY  - JOUR
AU  - C. L. Petersen
AU  - S. Zakeri
TI  - On the Julia set of a typical quadratic polynomial with a Siegel disk
JO  - Annals of mathematics
PY  - 2004
SP  - 1
EP  - 52
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.1/
DO  - 10.4007/annals.2004.159.1
LA  - en
ID  - 10_4007_annals_2004_159_1
ER  - 
%0 Journal Article
%A C. L. Petersen
%A S. Zakeri
%T On the Julia set of a typical quadratic polynomial with a Siegel disk
%J Annals of mathematics
%D 2004
%P 1-52
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.1/
%R 10.4007/annals.2004.159.1
%G en
%F 10_4007_annals_2004_159_1
C. L. Petersen; S. Zakeri. On the Julia set of a typical quadratic polynomial with a Siegel disk. Annals of mathematics, Tome 159 (2004) no. 1, pp. 1-52. doi : 10.4007/annals.2004.159.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.1/

Cité par Sources :