Moduli spaces of surfaces and real structures
Annals of mathematics, Tome 158 (2003) no. 2, pp. 577-592.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We give infinite series of groups $\Gamma$ and of compact complex surfaces of general type $S$ with fundamental group $\Gamma$ such that
DOI : 10.4007/annals.2003.158.577

Fabrizio Catanese 1

1 Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
@article{10_4007_annals_2003_158_577,
     author = {Fabrizio Catanese},
     title = {Moduli spaces of surfaces and real structures},
     journal = {Annals of mathematics},
     pages = {577--592},
     publisher = {mathdoc},
     volume = {158},
     number = {2},
     year = {2003},
     doi = {10.4007/annals.2003.158.577},
     mrnumber = {2018929},
     zbl = {1042.14011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.577/}
}
TY  - JOUR
AU  - Fabrizio Catanese
TI  - Moduli spaces of surfaces and real structures
JO  - Annals of mathematics
PY  - 2003
SP  - 577
EP  - 592
VL  - 158
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.577/
DO  - 10.4007/annals.2003.158.577
LA  - en
ID  - 10_4007_annals_2003_158_577
ER  - 
%0 Journal Article
%A Fabrizio Catanese
%T Moduli spaces of surfaces and real structures
%J Annals of mathematics
%D 2003
%P 577-592
%V 158
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.577/
%R 10.4007/annals.2003.158.577
%G en
%F 10_4007_annals_2003_158_577
Fabrizio Catanese. Moduli spaces of surfaces and real structures. Annals of mathematics, Tome 158 (2003) no. 2, pp. 577-592. doi : 10.4007/annals.2003.158.577. http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.577/

Cité par Sources :