A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources
Annals of mathematics, Tome 158 (2003) no. 2, pp. 355-418.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that, for every compact $n$-dimensional manifold, $n\geq 1$, there is a residual subset of Diff$^1(M)$ of diffeomorphisms for which the homoclinic class of any periodic saddle of $f$ verifies one of the following two possibilities: Either it is contained in the closure of an infinite set of sinks or sources (Newhouse phenomenon), or it presents some weak form of hyperbolicity called dominated splitting (this is a generalization of a bidimensional result of Mañé [Ma3]). In particular, we show that any $C^1$-robustly transitive diffeomorphism admits a dominated splitting.
DOI : 10.4007/annals.2003.158.355

Christian Bonatti 1 ; Lorenzo Díaz 2 ; Enrique R. Pujals 3

1 Institut de Mathématiques de Bourgogne, Université de Bourgogne, Dijon, France
2 Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro (PUC-RJ), Rio de Janeiro, Brazil
3 IMPA - Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil
@article{10_4007_annals_2003_158_355,
     author = {Christian Bonatti and Lorenzo D{\'\i}az and Enrique R. Pujals},
     title = {A $C^1$-generic dichotomy for diffeomorphisms: {Weak} forms of hyperbolicity or infinitely many sinks or sources},
     journal = {Annals of mathematics},
     pages = {355--418},
     publisher = {mathdoc},
     volume = {158},
     number = {2},
     year = {2003},
     doi = {10.4007/annals.2003.158.355},
     mrnumber = {2018925},
     zbl = {1049.37011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.355/}
}
TY  - JOUR
AU  - Christian Bonatti
AU  - Lorenzo Díaz
AU  - Enrique R. Pujals
TI  - A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources
JO  - Annals of mathematics
PY  - 2003
SP  - 355
EP  - 418
VL  - 158
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.355/
DO  - 10.4007/annals.2003.158.355
LA  - en
ID  - 10_4007_annals_2003_158_355
ER  - 
%0 Journal Article
%A Christian Bonatti
%A Lorenzo Díaz
%A Enrique R. Pujals
%T A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources
%J Annals of mathematics
%D 2003
%P 355-418
%V 158
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.355/
%R 10.4007/annals.2003.158.355
%G en
%F 10_4007_annals_2003_158_355
Christian Bonatti; Lorenzo Díaz; Enrique R. Pujals. A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources. Annals of mathematics, Tome 158 (2003) no. 2, pp. 355-418. doi : 10.4007/annals.2003.158.355. http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.355/

Cité par Sources :