Voir la notice de l'article provenant de la source Annals of Mathematics website
@article{10_4007_annals_2003_158_1089, author = {Andrew R. Booker}, title = {Poles of {Artin} $L$-functions and the strong {Artin} conjecture}, journal = {Annals of mathematics}, pages = {1089--1098}, publisher = {mathdoc}, volume = {158}, number = {3}, year = {2003}, doi = {10.4007/annals.2003.158.1089}, mrnumber = {2031863}, zbl = {1081.11038}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.1089/} }
TY - JOUR AU - Andrew R. Booker TI - Poles of Artin $L$-functions and the strong Artin conjecture JO - Annals of mathematics PY - 2003 SP - 1089 EP - 1098 VL - 158 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.1089/ DO - 10.4007/annals.2003.158.1089 LA - en ID - 10_4007_annals_2003_158_1089 ER -
%0 Journal Article %A Andrew R. Booker %T Poles of Artin $L$-functions and the strong Artin conjecture %J Annals of mathematics %D 2003 %P 1089-1098 %V 158 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.1089/ %R 10.4007/annals.2003.158.1089 %G en %F 10_4007_annals_2003_158_1089
Andrew R. Booker. Poles of Artin $L$-functions and the strong Artin conjecture. Annals of mathematics, Tome 158 (2003) no. 3, pp. 1089-1098. doi : 10.4007/annals.2003.158.1089. http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.1089/
Cité par Sources :