Approximation to real numbers by cubic algebraic integers. II
Annals of mathematics, Tome 158 (2003) no. 3, pp. 1081-1087.

Voir la notice de l'article provenant de la source Annals of Mathematics website

It has been conjectured for some time that, for any integer $n\ge 2$, any real number $\varepsilon >0$ and any transcendental real number $\xi$, there would exist infinitely many algebraic integers $\alpha$ of degree at most $n$ with the property that $|\xi-\alpha|\le H(\alpha)^{-n+\varepsilon}$, where $H(\alpha)$ denotes the height of $\alpha$. Although this is true for $n=2$, we show here that, for $n=3$, the optimal exponent of approximation is not $3$ but $(3+\sqrt{5})/2\simeq 2.618$.
DOI : 10.4007/annals.2003.158.1081

Damien Roy 1

1 Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
@article{10_4007_annals_2003_158_1081,
     author = {Damien Roy},
     title = {Approximation to real numbers by cubic algebraic integers. {II}},
     journal = {Annals of mathematics},
     pages = {1081--1087},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {2003},
     doi = {10.4007/annals.2003.158.1081},
     mrnumber = {2031862},
     zbl = {1044.11061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.1081/}
}
TY  - JOUR
AU  - Damien Roy
TI  - Approximation to real numbers by cubic algebraic integers. II
JO  - Annals of mathematics
PY  - 2003
SP  - 1081
EP  - 1087
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.1081/
DO  - 10.4007/annals.2003.158.1081
LA  - en
ID  - 10_4007_annals_2003_158_1081
ER  - 
%0 Journal Article
%A Damien Roy
%T Approximation to real numbers by cubic algebraic integers. II
%J Annals of mathematics
%D 2003
%P 1081-1087
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.1081/
%R 10.4007/annals.2003.158.1081
%G en
%F 10_4007_annals_2003_158_1081
Damien Roy. Approximation to real numbers by cubic algebraic integers. II. Annals of mathematics, Tome 158 (2003) no. 3, pp. 1081-1087. doi : 10.4007/annals.2003.158.1081. http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.1081/

Cité par Sources :