The best constant for centered Hardy-Littlewood maximal inequality
Annals of mathematics, Tome 157 (2003) no. 2, pp. 647-688.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We find the exact value of the best possible constant $C$ for the weak-type $(1,1)$ inequality for the one-dimensional centered Hardy-Littlewood maximal operator. We prove that $C$ is the largest root of the quadratic equation $12C^{2}-22C+5=0$ thus obtaining $C=1.5675208\ldots\,$ . This is the first time the best constant for one of the fundamental inequalities satisfied by a centered maximal operator is precisely evaluated.
DOI : 10.4007/annals.2003.157.647

Antonios D. Melas 1

1 Department of Mathematics, University of Athens, Athens, Greece
@article{10_4007_annals_2003_157_647,
     author = {Antonios D. Melas},
     title = {The best constant for centered {Hardy-Littlewood} maximal inequality},
     journal = {Annals of mathematics},
     pages = {647--688},
     publisher = {mathdoc},
     volume = {157},
     number = {2},
     year = {2003},
     doi = {10.4007/annals.2003.157.647},
     mrnumber = {1973058},
     zbl = {1055.42013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.647/}
}
TY  - JOUR
AU  - Antonios D. Melas
TI  - The best constant for centered Hardy-Littlewood maximal inequality
JO  - Annals of mathematics
PY  - 2003
SP  - 647
EP  - 688
VL  - 157
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.647/
DO  - 10.4007/annals.2003.157.647
LA  - en
ID  - 10_4007_annals_2003_157_647
ER  - 
%0 Journal Article
%A Antonios D. Melas
%T The best constant for centered Hardy-Littlewood maximal inequality
%J Annals of mathematics
%D 2003
%P 647-688
%V 157
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.647/
%R 10.4007/annals.2003.157.647
%G en
%F 10_4007_annals_2003_157_647
Antonios D. Melas. The best constant for centered Hardy-Littlewood maximal inequality. Annals of mathematics, Tome 157 (2003) no. 2, pp. 647-688. doi : 10.4007/annals.2003.157.647. http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.647/

Cité par Sources :