Convergence or generic divergence of the Birkhoff normal form
Annals of mathematics, Tome 157 (2003) no. 2, pp. 557-574.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that the Birkhoff normal form of hamiltonian flows at a nonresonant singular point with given quadratic part is always convergent or generically divergent. The same result is proved for the normalization mapping and any formal first integral.
DOI : 10.4007/annals.2003.157.557

Ricardo Pérez-Marco 1

1 Department of Mathematics, UCLA, Los Angeles, CA 90095, United States and Départament de Mathématiques, Universit$eacute; Paris-Sud, F-91405 Orsay, France
@article{10_4007_annals_2003_157_557,
     author = {Ricardo P\'erez-Marco},
     title = {Convergence or generic divergence of the {Birkhoff} normal form},
     journal = {Annals of mathematics},
     pages = {557--574},
     publisher = {mathdoc},
     volume = {157},
     number = {2},
     year = {2003},
     doi = {10.4007/annals.2003.157.557},
     mrnumber = {1973055},
     zbl = {1038.37048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.557/}
}
TY  - JOUR
AU  - Ricardo Pérez-Marco
TI  - Convergence or generic divergence of the Birkhoff normal form
JO  - Annals of mathematics
PY  - 2003
SP  - 557
EP  - 574
VL  - 157
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.557/
DO  - 10.4007/annals.2003.157.557
LA  - en
ID  - 10_4007_annals_2003_157_557
ER  - 
%0 Journal Article
%A Ricardo Pérez-Marco
%T Convergence or generic divergence of the Birkhoff normal form
%J Annals of mathematics
%D 2003
%P 557-574
%V 157
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.557/
%R 10.4007/annals.2003.157.557
%G en
%F 10_4007_annals_2003_157_557
Ricardo Pérez-Marco. Convergence or generic divergence of the Birkhoff normal form. Annals of mathematics, Tome 157 (2003) no. 2, pp. 557-574. doi : 10.4007/annals.2003.157.557. http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.557/

Cité par Sources :