Axiom A maps are dense in the space of unimodal maps in the $C^k$ topology
Annals of mathematics, Tome 157 (2003) no. 1, pp. 1-43.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this paper we prove $C^k$ structural stability conjecture for unimodal maps. In other words, we shall prove that Axiom A maps are dense in the space of $C^k$ unimodal maps in the $C^k$ topology. Here $k$ can be $1,2,\ldots,\infty,\omega$.
DOI : 10.4007/annals.2003.157.1

Oleg S. Kozlovski 1

1 Mathematics Institute, University of Warwick, Zeeman Building, Coventry CV4 7AL, United Kingdom
@article{10_4007_annals_2003_157_1,
     author = {Oleg S. Kozlovski},
     title = {Axiom {A} maps are dense in the space of unimodal maps in the $C^k$ topology},
     journal = {Annals of mathematics},
     pages = {1--43},
     publisher = {mathdoc},
     volume = {157},
     number = {1},
     year = {2003},
     doi = {10.4007/annals.2003.157.1},
     mrnumber = {1954263},
     zbl = {1215.37022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.1/}
}
TY  - JOUR
AU  - Oleg S. Kozlovski
TI  - Axiom A maps are dense in the space of unimodal maps in the $C^k$ topology
JO  - Annals of mathematics
PY  - 2003
SP  - 1
EP  - 43
VL  - 157
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.1/
DO  - 10.4007/annals.2003.157.1
LA  - en
ID  - 10_4007_annals_2003_157_1
ER  - 
%0 Journal Article
%A Oleg S. Kozlovski
%T Axiom A maps are dense in the space of unimodal maps in the $C^k$ topology
%J Annals of mathematics
%D 2003
%P 1-43
%V 157
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.1/
%R 10.4007/annals.2003.157.1
%G en
%F 10_4007_annals_2003_157_1
Oleg S. Kozlovski. Axiom A maps are dense in the space of unimodal maps in the $C^k$ topology. Annals of mathematics, Tome 157 (2003) no. 1, pp. 1-43. doi : 10.4007/annals.2003.157.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.157.1/

Cité par Sources :