Kenmotsu manifolds endowed with the semi-symmetric non-metriC $\phi$-connection to its tangent bundle
Novi Sad Journal of Mathematics, Tome 54 (2024) no. 1.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

The goal of this paper is to study the complete lift of the semi-symmetric non-metric $\phi$-connection on a Kenmotsu manifold to its tangent bundle $TM$ and to obtain a relation between the semi-symmetric non-metric $\phi$-connection $\bar{D}^C$ on Kenmotsu manifolds with respect to Levi-Civita connection $D^C$ by utilizes specialized mathematical operators. on $TM$. Next, the complete lifts of the curvature tensor, the scalar curvature and the Ricci tensor on $TM$ are constructed and show that Ricci tensor is symmetric on $TM$. Finally, a study of the complete lift of curvature tensor concerning the semi-symmetric non-metric $\phi$-connection to its tangent bundle $TM$ is done which shows that if the complete lift of the curvature tensor of $\bar{D}^C$ vanishes on $TM$, then the Kenmotsu manifold is locally isometric to the hyperbolic space $H^n(1)$ on $TM$.
Publié le :
DOI : 10.30755/NSJOM.13758
Classification : 53C05, 53C25, 58A30
Keywords: complete lift, tangent bundle, Kenmotsu manifold, semi-symmetric non-metric $\phi$-connection, curvature tensor, mathematical operators, scalar Ricci tensorr
@article{10.30755/NSJOM.13758,
     author = {Uday Chand De and Mohammad Nazrul Islam Khan},
     title = {Kenmotsu manifolds endowed with the semi-symmetric {non-metriC} $\phi$-connection to its tangent bundle},
     journal = {Novi Sad Journal of Mathematics},
     pages = {103 - 116},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2024},
     doi = {10.30755/NSJOM.13758},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.13758/}
}
TY  - JOUR
AU  - Uday Chand De
AU  - Mohammad Nazrul Islam Khan
TI  - Kenmotsu manifolds endowed with the semi-symmetric non-metriC $\phi$-connection to its tangent bundle
JO  - Novi Sad Journal of Mathematics
PY  - 2024
SP  - 103 
EP  -  116
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.13758/
DO  - 10.30755/NSJOM.13758
ID  - 10.30755/NSJOM.13758
ER  - 
%0 Journal Article
%A Uday Chand De
%A Mohammad Nazrul Islam Khan
%T Kenmotsu manifolds endowed with the semi-symmetric non-metriC $\phi$-connection to its tangent bundle
%J Novi Sad Journal of Mathematics
%D 2024
%P 103 - 116
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.13758/
%R 10.30755/NSJOM.13758
%F 10.30755/NSJOM.13758
Uday Chand De; Mohammad Nazrul Islam Khan. Kenmotsu manifolds endowed with the semi-symmetric non-metriC $\phi$-connection to its tangent bundle. Novi Sad Journal of Mathematics, Tome 54 (2024) no. 1. doi : 10.30755/NSJOM.13758. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.13758/

Cité par Sources :