Coverings with horo- and hyperballs generated by simply truncated orthoschmes
Novi Sad Journal of Mathematics, Tome 53 (2023) no. 1.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

After having investigated the packings derived by horo- and hyperballs related to simple frustum Coxeter orthoscheme tilings, we consider the corresponding covering problems (briefly hyp-hor coverings) in $n$-dimensional hyperbolic spaces $\HYN$ ($n=2,3$). In the $2-$ and $3-$dimensional hyperbolic spaces we construct hyp-hor coverings generated by simply truncated Coxeter orthochemes, and we determine their thinnest covering configurations and their densities. We prove, that in the hyperbolic plane ($n=2$) the density of the above thinnest hyp-hor covering arbitrarily approximates the universal lower bound of the hypercycle or horocycle covering density $\frac{\sqrt{12}}{\pi}$, and in $\HYP$ the optimal configuration belongs to the $\{7,3,6\}$ Coxeter tiling with density $\approx 1.27297$, that is less than the previously known famous horosphere covering density $1.280$ due to L.~Fejes T\'oth and K.~B\"or\"oczky. Moreover, we study the hyp-hor coverings in truncated orthosche\-mes $\{p,3,6\}$ $(6 p 7, ~ p\in \mathbb{R})$, whose density function attains its minimum at parameter $p\approx 6.45962$, with density $\approx 1.26885$. That means, that this locally optimal hyp-hor configuration provide smaller covering density than the former determined $\approx 1.27297$, but this hyp-hor packing configuration can not be extended to the entire hyperbolic space $\m1athbb{H}^3$.
Publié le :
DOI : 10.30755/NSJOM.12680
Classification : 53A35, 52C17
Keywords: hyperbolic geometry, horoball and hyperball coverings, covering density, Coxeter tilings
@article{10.30755/NSJOM.12680,
     author = {Mikl\'os Eper and Jen\H{o} Szirmai},
     title = {Coverings with horo- and hyperballs generated by simply truncated orthoschmes},
     journal = {Novi Sad Journal of Mathematics},
     pages = {165 - 182},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2023},
     doi = {10.30755/NSJOM.12680},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12680/}
}
TY  - JOUR
AU  - Miklós Eper
AU  - Jenő Szirmai
TI  - Coverings with horo- and hyperballs generated by simply truncated orthoschmes
JO  - Novi Sad Journal of Mathematics
PY  - 2023
SP  - 165 
EP  -  182
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12680/
DO  - 10.30755/NSJOM.12680
ID  - 10.30755/NSJOM.12680
ER  - 
%0 Journal Article
%A Miklós Eper
%A Jenő Szirmai
%T Coverings with horo- and hyperballs generated by simply truncated orthoschmes
%J Novi Sad Journal of Mathematics
%D 2023
%P 165 - 182
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12680/
%R 10.30755/NSJOM.12680
%F 10.30755/NSJOM.12680
Miklós Eper; Jenő Szirmai. Coverings with horo- and hyperballs generated by simply truncated orthoschmes. Novi Sad Journal of Mathematics, Tome 53 (2023) no. 1. doi : 10.30755/NSJOM.12680. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12680/

Cité par Sources :