A study on convergence of sequences of functions in asymmetric metric spaces using ideals
Novi Sad Journal of Mathematics, Tome 53 (2023) no. 1.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

We introduce and study the notions of backward and forward $\mathcal I(\alpha)$-convergence and $\mathcal I$-exhaustiveness of sequences of functions between asymmetric metric spaces. We establish a relation between backward (resp. forward) $\mathcal I(\alpha)$-convergent and backward (resp. forward) $\mathcal I$-exhaustiveness. Also, we introduce and study ideal versions of some classical notions (Alexandroff and strong uniform) of convergence of sequences of functions in this context. We give some examples to ensure the alternation of basic results from the metric case.
Publié le :
DOI : 10.30755/NSJOM.12544
Classification : 40A35, 26A03, 26A15
Keywords: Ideal convergence, asymmetric metric spaces, backward and forward $\mathcal I(\alpha)$-convergence, backward and forward $\mathcal I$-exhaustiveness, sequences of functions
@article{10.30755/NSJOM.12544,
     author = {Argha Ghosh},
     title = {A study on convergence of sequences of functions in asymmetric metric spaces using ideals},
     journal = {Novi Sad Journal of Mathematics},
     pages = {97 - 116},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2023},
     doi = {10.30755/NSJOM.12544},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12544/}
}
TY  - JOUR
AU  - Argha Ghosh
TI  - A study on convergence of sequences of functions in asymmetric metric spaces using ideals
JO  - Novi Sad Journal of Mathematics
PY  - 2023
SP  - 97 
EP  -  116
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12544/
DO  - 10.30755/NSJOM.12544
ID  - 10.30755/NSJOM.12544
ER  - 
%0 Journal Article
%A Argha Ghosh
%T A study on convergence of sequences of functions in asymmetric metric spaces using ideals
%J Novi Sad Journal of Mathematics
%D 2023
%P 97 - 116
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12544/
%R 10.30755/NSJOM.12544
%F 10.30755/NSJOM.12544
Argha Ghosh. A study on convergence of sequences of functions in asymmetric metric spaces using ideals. Novi Sad Journal of Mathematics, Tome 53 (2023) no. 1. doi : 10.30755/NSJOM.12544. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12544/

Cité par Sources :