Symmetric properties of elementary operators
Novi Sad Journal of Mathematics, Tome 52 (2022) no. 1.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

We consider the elementary operator $M_{A,B}$, acting on the Hilbert-Schmidt class $C_{2}\left( {\mathcal{H}}\right) $, given by $M_{A,B}\left( T\right) =ATB$ with $A$ and $B$ bounded operators on ${\mathcal{H}}$. In this work, we establish necessary and sufficient conditions on $A$ and $B$ for $M_{A,B}$ to be a $2$-symmetric and $3$-symmetric. We also characterize binormality of elementary operators.
Publié le :
DOI : 10.30755/NSJOM.12475
Classification : 47A05, 47A55, 47B15
Keywords: Elementary operator, Symmetric operator, Binormal operator, Hilbert-Schmidt class
@article{10.30755/NSJOM.12475,
     author = {Messaoud Guesba},
     title = {Symmetric properties of elementary operators},
     journal = {Novi Sad Journal of Mathematics},
     pages = {191 - 197},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2022},
     doi = {10.30755/NSJOM.12475},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12475/}
}
TY  - JOUR
AU  - Messaoud Guesba
TI  - Symmetric properties of elementary operators
JO  - Novi Sad Journal of Mathematics
PY  - 2022
SP  - 191 
EP  -  197
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12475/
DO  - 10.30755/NSJOM.12475
ID  - 10.30755/NSJOM.12475
ER  - 
%0 Journal Article
%A Messaoud Guesba
%T Symmetric properties of elementary operators
%J Novi Sad Journal of Mathematics
%D 2022
%P 191 - 197
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12475/
%R 10.30755/NSJOM.12475
%F 10.30755/NSJOM.12475
Messaoud Guesba. Symmetric properties of elementary operators. Novi Sad Journal of Mathematics, Tome 52 (2022) no. 1. doi : 10.30755/NSJOM.12475. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12475/

Cité par Sources :