On a class of partial fractional integro-differential inclusions
Novi Sad Journal of Mathematics, Tome 53 (2023) no. 1.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

A Darboux problem associated to a fractional hyperbolic integro-differential inclusion defined by a Caputo type fractional derivative is studied. We obtain an existence result for this problem in the situation when the values of the set-valued map are not convex by employing a method originally introduced by Filippov. Also, we provide the existence of solutions continuously depending on a parameter for the problem studied. This second result allows to deduce a continuous selection of the solution set of the problem considered.
Publié le :
DOI : 10.30755/NSJOM.12465
Classification : 34A60, 26A33, 34A08
Keywords: differential inclusion, fractional derivative, decomposable set
@article{10.30755/NSJOM.12465,
     author = {Aurelian Cernea},
     title = {On a class of partial fractional integro-differential inclusions},
     journal = {Novi Sad Journal of Mathematics},
     pages = {61 - 74},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2023},
     doi = {10.30755/NSJOM.12465},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12465/}
}
TY  - JOUR
AU  - Aurelian Cernea
TI  - On a class of partial fractional integro-differential inclusions
JO  - Novi Sad Journal of Mathematics
PY  - 2023
SP  - 61 
EP  -  74
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12465/
DO  - 10.30755/NSJOM.12465
ID  - 10.30755/NSJOM.12465
ER  - 
%0 Journal Article
%A Aurelian Cernea
%T On a class of partial fractional integro-differential inclusions
%J Novi Sad Journal of Mathematics
%D 2023
%P 61 - 74
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12465/
%R 10.30755/NSJOM.12465
%F 10.30755/NSJOM.12465
Aurelian Cernea. On a class of partial fractional integro-differential inclusions. Novi Sad Journal of Mathematics, Tome 53 (2023) no. 1. doi : 10.30755/NSJOM.12465. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.12465/

Cité par Sources :