On Brouwer-Heyting lattices
Novi Sad Journal of Mathematics, Tome 52 (2022) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

In this paper, we study the class of a BH lattices as a common frame to Brouwerian and Heyting lattices and investigate some related properties. Also, we characterize the divisibility condition in the definition of BH lattice and we obtain that the set H of all idempotent elements in a BH lattice $L$ forms a Heyting algebra. We introduce the notion of an IBH lattice and under some specific conditions, we characterize an MV algebra, a bounded Wajsberg hoop, a Boolean Algebra, and a commutative bounded BCK algebra in terms on IBH lattices.
Publié le :
DOI : 10.30755/NSJOM.11705
Classification : 06D99, 15B99
Keywords: Brouwer-Heyting monoids (BH monoids), BH Lattice, IBH Lattice, residuation
@article{10.30755/NSJOM.11705,
     author = {DPRV Subba Rao},
     title = {On {Brouwer-Heyting} lattices},
     journal = {Novi Sad Journal of Mathematics},
     pages = {95 - 109},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2022},
     doi = {10.30755/NSJOM.11705},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11705/}
}
TY  - JOUR
AU  - DPRV Subba Rao
TI  - On Brouwer-Heyting lattices
JO  - Novi Sad Journal of Mathematics
PY  - 2022
SP  - 95 
EP  -  109
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11705/
DO  - 10.30755/NSJOM.11705
ID  - 10.30755/NSJOM.11705
ER  - 
%0 Journal Article
%A DPRV Subba Rao
%T On Brouwer-Heyting lattices
%J Novi Sad Journal of Mathematics
%D 2022
%P 95 - 109
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11705/
%R 10.30755/NSJOM.11705
%F 10.30755/NSJOM.11705
DPRV Subba Rao. On Brouwer-Heyting lattices. Novi Sad Journal of Mathematics, Tome 52 (2022) no. 2. doi : 10.30755/NSJOM.11705. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11705/

Cité par Sources :