Prime coprime graph of a finite group
Novi Sad Journal of Mathematics, Tome 52 (2022) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

In this paper, a new graph structure called the \textit{prime coprime graph} of a finite group $G$ denoted by $\Theta(G)$ has been introduced. The \textit{coprime graph} of a finite group, introduced by Ma, Wei, and Yang [\textit{The coprime graph of a group. International Journal of Group Theory, 3(3), pp.13-23.}] is a subgraph of the \textit{prime coprime graph} introduced in this paper. The vertex set of $\Theta(G)$ is $G$, and any two vertices $x,y$ in $\Theta(G)$ are adjacent if and only if $\gcd(o(x),o(y))$ is equal to $1$ or a prime number. We study how the graph properties of $\Theta(G)$ and group properties of $G$ are related. We provide a necessary and sufficient condition for $\Theta(G)$ to be Eulerian for any finite group $G$. We also study $\Theta(G)$ for certain finite groups like $\mathbb Z_n$ and $\mbox D_n$ and derive conditions when it is connected, complete, planar, and Hamiltonian for various $n\in \mathbb N$. We also study the vertex connectivity of $\Theta(\mathbb Z_n)$ for various $n\in \mathbb N.$ Finally, we have computed the signless Laplacian spectrum of $\Theta(G)$ when $G=\mathbb Z_n$ and $G=\mbox D_n$ for $n\in \{pq,p^m\}$ where $p,q$ are distinct primes and $m\in \mathbb{N}$.
Publié le :
DOI : 10.30755/NSJOM.11151
Classification : 05C25, 05C50
Keywords: finite cyclic group, dihedral group, graph, vertex connectivity, signless Laplacian
@article{10.30755/NSJOM.11151,
     author = {Avishek Adhikari and Subarsha Banerjee},
     title = {Prime  coprime  graph of a  finite group},
     journal = {Novi Sad Journal of Mathematics},
     pages = {41 - 59},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2022},
     doi = {10.30755/NSJOM.11151},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11151/}
}
TY  - JOUR
AU  - Avishek Adhikari
AU  - Subarsha Banerjee
TI  - Prime  coprime  graph of a  finite group
JO  - Novi Sad Journal of Mathematics
PY  - 2022
SP  - 41 
EP  -  59
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11151/
DO  - 10.30755/NSJOM.11151
ID  - 10.30755/NSJOM.11151
ER  - 
%0 Journal Article
%A Avishek Adhikari
%A Subarsha Banerjee
%T Prime  coprime  graph of a  finite group
%J Novi Sad Journal of Mathematics
%D 2022
%P 41 - 59
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11151/
%R 10.30755/NSJOM.11151
%F 10.30755/NSJOM.11151
Avishek Adhikari; Subarsha Banerjee. Prime  coprime  graph of a  finite group. Novi Sad Journal of Mathematics, Tome 52 (2022) no. 2. doi : 10.30755/NSJOM.11151. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11151/

Cité par Sources :