On $n-$absorbing primary submodules
Novi Sad Journal of Mathematics, Tome 52 (2022) no. 1.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

Let $R$ be a commutative ring with $1\neq0$, $N$ a proper submodule of an $R-$module $M$, and $n$ a positive integer. In this paper, we define $N$ to be an $n-$absorbing primary submodule of $M$ if whenever $a_1\ldots a_nx\in~N$ for $a_1,\ldots ,a_n\in~R$ and $x\in~M,$ then either $a_1\ldots a_n\in(N:_RM)$ or there are $(n-1)$ of the $a_i~'s$ whose product with $x$ is in $M-rad(N)$. A number of results concerning $n-$absorbing primary submodules are given.
Publié le :
DOI : 10.30755/NSJOM.11073
Classification : 13C05, 13C13, 13F05
Keywords: $2-$absorbing submodule, $n-$absorbing submodule, multiplication module, Dedekind module, divided module, $2-$absorbing primary submodule
@article{10.30755/NSJOM.11073,
     author = {Mohammad Hamoda},
     title = {On $n-$absorbing primary submodules},
     journal = {Novi Sad Journal of Mathematics},
     pages = {143 - 154},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2022},
     doi = {10.30755/NSJOM.11073},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11073/}
}
TY  - JOUR
AU  - Mohammad Hamoda
TI  - On $n-$absorbing primary submodules
JO  - Novi Sad Journal of Mathematics
PY  - 2022
SP  - 143 
EP  -  154
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11073/
DO  - 10.30755/NSJOM.11073
ID  - 10.30755/NSJOM.11073
ER  - 
%0 Journal Article
%A Mohammad Hamoda
%T On $n-$absorbing primary submodules
%J Novi Sad Journal of Mathematics
%D 2022
%P 143 - 154
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11073/
%R 10.30755/NSJOM.11073
%F 10.30755/NSJOM.11073
Mohammad Hamoda. On $n-$absorbing primary submodules. Novi Sad Journal of Mathematics, Tome 52 (2022) no. 1. doi : 10.30755/NSJOM.11073. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.11073/

Cité par Sources :