Solving a hyperbolic equation in the first canonical form
Novi Sad Journal of Mathematics, Tome 51 (2021) no. 1.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

Using regularization techniques, we give a meaning to a nonlinear second order partial differential Cauchy problem by replacing it by a two parameter family of Lipschitz regular problems in an appropriate algebra of generalized functions. We prove existence of a solution and we precise how it depends on the choices made. We study the relationship with the classical solution.
Publié le :
DOI : 10.30755/NSJOM.10867
Classification : 35D05, 35L05, 35L70, 46F30
Keywords: algebras of generalized functions, Cauchy problems, hyperbolic equations, nonlinear partial differential equations, regularization of problems
@article{10.30755/NSJOM.10867,
     author = {Victor D\'evou\'e},
     title = {Solving a hyperbolic equation in the first canonical form},
     journal = {Novi Sad Journal of Mathematics},
     pages = {133 - 161},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2021},
     doi = {10.30755/NSJOM.10867},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10867/}
}
TY  - JOUR
AU  - Victor Dévoué
TI  - Solving a hyperbolic equation in the first canonical form
JO  - Novi Sad Journal of Mathematics
PY  - 2021
SP  - 133 
EP  -  161
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10867/
DO  - 10.30755/NSJOM.10867
ID  - 10.30755/NSJOM.10867
ER  - 
%0 Journal Article
%A Victor Dévoué
%T Solving a hyperbolic equation in the first canonical form
%J Novi Sad Journal of Mathematics
%D 2021
%P 133 - 161
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10867/
%R 10.30755/NSJOM.10867
%F 10.30755/NSJOM.10867
Victor Dévoué. Solving a hyperbolic equation in the first canonical form. Novi Sad Journal of Mathematics, Tome 51 (2021) no. 1. doi : 10.30755/NSJOM.10867. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10867/

Cité par Sources :