On unit sphere tangent bundles over complex Grassmannians
Novi Sad Journal of Mathematics, Tome 53 (2023) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

Let $ G_{k,n}(\C) $ for $ 2\leq k n $ denote the Grassmann manifold of $ k $-dimensional vector subspaces of $ \C^{n}. $ In this paper we show that the total space of the unit sphere tangent bundle $ S^{2m-1}\rightarrow E\overset{p}{\rightarrow} G_{k,n}(\C) $ is not formal, where $ m=k(n-k). $
Publié le :
DOI : 10.30755/NSJOM.10787
Classification : 55P62, 55P15
Keywords: Sullivan algebra, Sphere bundle, Complex Grassmann manifolds, Formality
@article{10.30755/NSJOM.10787,
     author = {Jean Baptiste Gatsinzi and Oteng Maphane},
     title = {On unit sphere tangent bundles over complex {Grassmannians}},
     journal = {Novi Sad Journal of Mathematics},
     pages = {9 - 16},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2023},
     doi = {10.30755/NSJOM.10787},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10787/}
}
TY  - JOUR
AU  - Jean Baptiste Gatsinzi
AU  - Oteng Maphane
TI  - On unit sphere tangent bundles over complex Grassmannians
JO  - Novi Sad Journal of Mathematics
PY  - 2023
SP  - 9 
EP  -  16
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10787/
DO  - 10.30755/NSJOM.10787
ID  - 10.30755/NSJOM.10787
ER  - 
%0 Journal Article
%A Jean Baptiste Gatsinzi
%A Oteng Maphane
%T On unit sphere tangent bundles over complex Grassmannians
%J Novi Sad Journal of Mathematics
%D 2023
%P 9 - 16
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10787/
%R 10.30755/NSJOM.10787
%F 10.30755/NSJOM.10787
Jean Baptiste Gatsinzi; Oteng Maphane. On unit sphere tangent bundles over complex Grassmannians. Novi Sad Journal of Mathematics, Tome 53 (2023) no. 2. doi : 10.30755/NSJOM.10787. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10787/

Cité par Sources :