Weighted Young-type inequalities on locally compact groups
Novi Sad Journal of Mathematics, Tome 50 (2020) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

We obtain an extension of Young's convolution inequality in weighted Lebesgue spaces of measurable functions defined on locally compact groups. Our result provides a unified treatment of a theorem of Klein and Russo extending the classical Young's inequality to locally compact groups, and a theorem of Biswas and Swanson generalizing Young's inequality to weighted Lebesgue spaces on locally compact Abelian groups.
Publié le :
DOI : 10.30755/NSJOM.10061
Classification : 43A15, 43A20, 22D15
Keywords: Convolution operator, Young's inequality for convolution, Weighted spaces, Locally compact groups
@article{10.30755/NSJOM.10061,
     author = {Fr\'ed\'eric Morneau-Gu\'erin},
     title = {Weighted {Young-type} inequalities on locally compact groups},
     journal = {Novi Sad Journal of Mathematics},
     pages = {107 - 120},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2020},
     doi = {10.30755/NSJOM.10061},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10061/}
}
TY  - JOUR
AU  - Frédéric Morneau-Guérin
TI  - Weighted Young-type inequalities on locally compact groups
JO  - Novi Sad Journal of Mathematics
PY  - 2020
SP  - 107 
EP  -  120
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10061/
DO  - 10.30755/NSJOM.10061
ID  - 10.30755/NSJOM.10061
ER  - 
%0 Journal Article
%A Frédéric Morneau-Guérin
%T Weighted Young-type inequalities on locally compact groups
%J Novi Sad Journal of Mathematics
%D 2020
%P 107 - 120
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10061/
%R 10.30755/NSJOM.10061
%F 10.30755/NSJOM.10061
Frédéric Morneau-Guérin. Weighted Young-type inequalities on locally compact groups. Novi Sad Journal of Mathematics, Tome 50 (2020) no. 2. doi : 10.30755/NSJOM.10061. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.10061/

Cité par Sources :