Commutative weakly nil-neat rings
Novi Sad Journal of Mathematics, Tome 50 (2020) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

We introduce and explore the notion of commutative {\it weakly nil-neat} rings as those rings whose proper homomorphic images are weakly nil-clean. Our characterization theorem completely gives a description of this class of rings and extends results due to Danchev-McGovern (J. Algebra, 2015) and Samiei (Novi Sad J. Math., 2019).
Publié le :
DOI : 10.30755/NSJOM.09638
Classification : 16U99, 16E50, 13B99
Keywords: nil-clean rings, nil-neat rings, weakly nil-clean rings, weakly nil-neat rings
@article{10.30755/NSJOM.09638,
     author = {Peter Danchev and Mahdi Samiei},
     title = {Commutative weakly nil-neat rings},
     journal = {Novi Sad Journal of Mathematics},
     pages = {51 - 59},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2020},
     doi = {10.30755/NSJOM.09638},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09638/}
}
TY  - JOUR
AU  - Peter Danchev
AU  - Mahdi Samiei
TI  - Commutative weakly nil-neat rings
JO  - Novi Sad Journal of Mathematics
PY  - 2020
SP  - 51 
EP  -  59
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09638/
DO  - 10.30755/NSJOM.09638
ID  - 10.30755/NSJOM.09638
ER  - 
%0 Journal Article
%A Peter Danchev
%A Mahdi Samiei
%T Commutative weakly nil-neat rings
%J Novi Sad Journal of Mathematics
%D 2020
%P 51 - 59
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09638/
%R 10.30755/NSJOM.09638
%F 10.30755/NSJOM.09638
Peter Danchev; Mahdi Samiei. Commutative weakly nil-neat rings. Novi Sad Journal of Mathematics, Tome 50 (2020) no. 2. doi : 10.30755/NSJOM.09638. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09638/

Cité par Sources :