On E-Bochner Curvature Tensor of Contact Metric Generalized $(\kappa,\mu)$ Space Forms
Novi Sad Journal of Mathematics, Tome 52 (2022) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

Here we derive the necessary and sufficient condition for the Sasakian structure corresponding to the contact metric generalized $(\kappa, \mu)$-space forms. Further, we study the contact metric generalized $(\kappa, \mu)$-space forms satisfying $B^e(\xi , X) \cdot \varphi =0,$ $B^e(\xi , X) \cdot h =0,$ and $B^e(\xi,X) \cdot S=0$, where $B^e$ is a E-Bochner curvature tensor, $h:=\frac{1}{2}\pounds _\xi \varphi$ and $S$ is the Ricci tensor.
Publié le :
DOI : 10.30755/NSJOM.09389
Classification : 53D15, 53D10, 53C25, 53C21
Keywords: almost contact metric manifolds, contact metric manifolds, generalized $(\kappa, \mu)$ space forms, E-Bochner curvature tensor
@article{10.30755/NSJOM.09389,
     author = {Shruthi Chidananda and Venkatesha Venkatesha},
     title = {On {E-Bochner} {Curvature} {Tensor} of {Contact} {Metric} {Generalized} $(\kappa,\mu)$ {Space} {Forms}},
     journal = {Novi Sad Journal of Mathematics},
     pages = {1 - 11},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2022},
     doi = {10.30755/NSJOM.09389},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09389/}
}
TY  - JOUR
AU  - Shruthi Chidananda
AU  - Venkatesha Venkatesha
TI  - On E-Bochner Curvature Tensor of Contact Metric Generalized $(\kappa,\mu)$ Space Forms
JO  - Novi Sad Journal of Mathematics
PY  - 2022
SP  - 1 
EP  -  11
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09389/
DO  - 10.30755/NSJOM.09389
ID  - 10.30755/NSJOM.09389
ER  - 
%0 Journal Article
%A Shruthi Chidananda
%A Venkatesha Venkatesha
%T On E-Bochner Curvature Tensor of Contact Metric Generalized $(\kappa,\mu)$ Space Forms
%J Novi Sad Journal of Mathematics
%D 2022
%P 1 - 11
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09389/
%R 10.30755/NSJOM.09389
%F 10.30755/NSJOM.09389
Shruthi Chidananda; Venkatesha Venkatesha. On E-Bochner Curvature Tensor of Contact Metric Generalized $(\kappa,\mu)$ Space Forms. Novi Sad Journal of Mathematics, Tome 52 (2022) no. 2. doi : 10.30755/NSJOM.09389. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09389/

Cité par Sources :