Cyclic Picard Operator and Simulation Type Functions
Novi Sad Journal of Mathematics, Tome 50 (2020) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

In this manuscrpt, we introduce generalized $(\alpha,\beta,\mathcal{Z_G})-$ contraction using the concept of cyclic $(\alpha,\beta)$-admissible mapping and prove the existence of Picard operator for such class in the structure of metric spaces. Also we provide an example for the illustration of the same.
Publié le :
DOI : 10.30755/NSJOM.09381
Classification : 47H10, 54H25, 46J10, 46J15
Keywords: Picard operator, Fixed point, Simulation function, generalized $(\alpha,\beta,\mathcal{Z_G})-$ contraction
@article{10.30755/NSJOM.09381,
     author = {Sumit Chandok},
     title = {Cyclic {Picard} {Operator} and {Simulation} {Type} {Functions}},
     journal = {Novi Sad Journal of Mathematics},
     pages = {35 - 40},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2020},
     doi = {10.30755/NSJOM.09381},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09381/}
}
TY  - JOUR
AU  - Sumit Chandok
TI  - Cyclic Picard Operator and Simulation Type Functions
JO  - Novi Sad Journal of Mathematics
PY  - 2020
SP  - 35 
EP  -  40
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09381/
DO  - 10.30755/NSJOM.09381
ID  - 10.30755/NSJOM.09381
ER  - 
%0 Journal Article
%A Sumit Chandok
%T Cyclic Picard Operator and Simulation Type Functions
%J Novi Sad Journal of Mathematics
%D 2020
%P 35 - 40
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09381/
%R 10.30755/NSJOM.09381
%F 10.30755/NSJOM.09381
Sumit Chandok. Cyclic Picard Operator and Simulation Type Functions. Novi Sad Journal of Mathematics, Tome 50 (2020) no. 2. doi : 10.30755/NSJOM.09381. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.09381/

Cité par Sources :