Characterization of $R\omega O(X)$ sets by using ${\delta{\omega}}-$cluster points
Novi Sad Journal of Mathematics, Tome 49 (2019) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

The class of $R\omega-$open set was defined by S. Murugesan. He show that the collection of all $R\omega-$open forms abase of some topology on $X$ denoted by $\tau_{\delta-\omega}$. The elements of $\tau_{\delta-\omega}$ are called ${\delta_\omega}-$open sets and the complement of a ${\delta_\omega}-$open set is called a ${\delta_\omega}-$closed set. In this paper we will introduce a new characterization of ${\delta_\omega}-$open and ${\delta_\omega}-$closed sets by using ${\delta \omega}-$cluster point. We show that the set of all ${\delta\omega}-$open sets form a topology denoted by $\tau_{\delta_{\omega}}$ and equal to $\tau_{\delta-\omega}$. We discuss several properties of this topology and we give a characterization for the open sets in $\tau_{\delta-\omega}$. We investigate some of relationship between the separation axioms of $(X,\tau_{\delta_{\omega}})$ and $(X,\tau)$. In the last section we study some of connectedness properties of $(X,\tau_{\delta_{\omega}})$ and some covering properties.
Publié le :
DOI : 10.30755/NSJOM.08786
Classification : 54A05, 54C08, 54D10
Keywords: ${\delta {\omega}}-$cluster point, $\delta_{\omega}-$open sets, $\delta-$open sets, $\omega-$open sets
@article{10.30755/NSJOM.08786,
     author = {Heyam H. Al-jarrah and Amani Al-rawshdeh and Eman M. Al-saleh and Khalid Y. Al-zoubi},
     title = {Characterization of $R\omega O(X)$ sets by using ${\delta{\omega}}-$cluster points},
     journal = {Novi Sad Journal of Mathematics},
     pages = {109 - 122},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2019},
     doi = {10.30755/NSJOM.08786},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.08786/}
}
TY  - JOUR
AU  - Heyam H. Al-jarrah
AU  - Amani Al-rawshdeh
AU  - Eman M. Al-saleh
AU  - Khalid Y. Al-zoubi
TI  - Characterization of $R\omega O(X)$ sets by using ${\delta{\omega}}-$cluster points
JO  - Novi Sad Journal of Mathematics
PY  - 2019
SP  - 109 
EP  -  122
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.08786/
DO  - 10.30755/NSJOM.08786
ID  - 10.30755/NSJOM.08786
ER  - 
%0 Journal Article
%A Heyam H. Al-jarrah
%A Amani Al-rawshdeh
%A Eman M. Al-saleh
%A Khalid Y. Al-zoubi
%T Characterization of $R\omega O(X)$ sets by using ${\delta{\omega}}-$cluster points
%J Novi Sad Journal of Mathematics
%D 2019
%P 109 - 122
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.08786/
%R 10.30755/NSJOM.08786
%F 10.30755/NSJOM.08786
Heyam H. Al-jarrah; Amani Al-rawshdeh; Eman M. Al-saleh; Khalid Y. Al-zoubi. Characterization of $R\omega O(X)$ sets by using ${\delta{\omega}}-$cluster points. Novi Sad Journal of Mathematics, Tome 49 (2019) no. 2. doi : 10.30755/NSJOM.08786. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.08786/

Cité par Sources :