Commutative rings whose proper homomorphic images are nil clean
Novi Sad Journal of Mathematics, Tome 50 (2020) no. 1.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

As defined by Diesl a (noncommutative) ring $R$ is called nil clean if every element of $R$ is a sum of a nilpotent and an idempotent. The purpose of this paper is to study and investigate a new class of rings called nil neat rings, which is presented in \cite[Problem $4$]{comm.weaklynilclean}. Actually, these rings are a natural generalization of the notion of neat rings, as rings for which any proper homomorphic images are nil clean. It is well-known that any homomorphic image of a nil clean ring is again nil clean. In this paper, it is proved that a nil neat ring which is not nil clean is either a field that is not isomorphic to $\mathbb{Z}_2$ or a one-dimensional domain. We also show that a ring $R$ is nil neat if and only if every nonzero prime ideal of $R$ is maximal, and that for all nonzero maximal ideals $M$ of $R$, $R/M\cong \mathbb{Z}_2$.
Publié le :
DOI : 10.30755/NSJOM.08071
Classification : 13A99, 13F99
Keywords: clean ring, nil clean ring, neat ring, nil neat ring
@article{10.30755/NSJOM.08071,
     author = {Mahdi Samiei},
     title = {Commutative rings whose proper homomorphic images are nil clean},
     journal = {Novi Sad Journal of Mathematics},
     pages = {37 - 44},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2020},
     doi = {10.30755/NSJOM.08071},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.08071/}
}
TY  - JOUR
AU  - Mahdi Samiei
TI  - Commutative rings whose proper homomorphic images are nil clean
JO  - Novi Sad Journal of Mathematics
PY  - 2020
SP  - 37 
EP  -  44
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.08071/
DO  - 10.30755/NSJOM.08071
ID  - 10.30755/NSJOM.08071
ER  - 
%0 Journal Article
%A Mahdi Samiei
%T Commutative rings whose proper homomorphic images are nil clean
%J Novi Sad Journal of Mathematics
%D 2020
%P 37 - 44
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.08071/
%R 10.30755/NSJOM.08071
%F 10.30755/NSJOM.08071
Mahdi Samiei. Commutative rings whose proper homomorphic images are nil clean. Novi Sad Journal of Mathematics, Tome 50 (2020) no. 1. doi : 10.30755/NSJOM.08071. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.08071/

Cité par Sources :