Study of global asymptotic stability in nonlinear neutral dynamic equations with variable delays
Novi Sad Journal of Mathematics, Tome 49 (2019) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

In this paper, we consider a class of nonlinear neutral dynamic equations. By using the Banach contraction mapping principle, we give some new conditions to ensure that the zero solution of the considered equation is globally asymptotically stable in $C_{rd}^{1}$. Our work extends previous results in the literature.
Publié le :
DOI : 10.30755/NSJOM.07501
Classification : 34K20, 34K30, 34K40
Keywords: fixed points, neutral dynamic equations, asymptotic stability, time scales
@article{10.30755/NSJOM.07501,
     author = {Abdelouaheb Ardjouni and Ahcene Djoudi},
     title = {Study of global asymptotic stability in nonlinear neutral dynamic equations with variable
delays},
     journal = {Novi Sad Journal of Mathematics},
     pages = {35 - 48},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2019},
     doi = {10.30755/NSJOM.07501},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.07501/}
}
TY  - JOUR
AU  - Abdelouaheb Ardjouni
AU  - Ahcene Djoudi
TI  - Study of global asymptotic stability in nonlinear neutral dynamic equations with variable
delays
JO  - Novi Sad Journal of Mathematics
PY  - 2019
SP  - 35 
EP  -  48
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.07501/
DO  - 10.30755/NSJOM.07501
ID  - 10.30755/NSJOM.07501
ER  - 
%0 Journal Article
%A Abdelouaheb Ardjouni
%A Ahcene Djoudi
%T Study of global asymptotic stability in nonlinear neutral dynamic equations with variable
delays
%J Novi Sad Journal of Mathematics
%D 2019
%P 35 - 48
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.07501/
%R 10.30755/NSJOM.07501
%F 10.30755/NSJOM.07501
Abdelouaheb Ardjouni; Ahcene Djoudi. Study of global asymptotic stability in nonlinear neutral dynamic equations with variable
delays. Novi Sad Journal of Mathematics, Tome 49 (2019) no. 2. doi : 10.30755/NSJOM.07501. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.07501/

Cité par Sources :