Operators induced by weighted Toeplitz and weighted Hankel operators
Novi Sad Journal of Mathematics, Tome 48 (2018) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

In this paper, the notion of $\it{weighted~Toep}$-$\it{Hank}$ operator $G_{\phi}^{\beta}$, induced by the symbol $\phi\in L^{\infty}(\beta)$, on the space $H^2(\beta)$, $\beta=\{\beta_n\}_{n\in \mathbb{Z}}$ being a semi-dual sequence of positive numbers with $\beta_0=1$, is introduced. Symbols are identified for the induced $\it{weighted~Toep}$-$\it{Hank}$ operator to be co-isometry, normal and hyponormal.
Publié le :
DOI : 10.30755/NSJOM.07018
Classification : 47B37, 47B35
Keywords: Hankel operators, Toeplitz operators, Hyponormal operator, Hilbert Schmidt operator, Toep-Hank operator
@article{10.30755/NSJOM.07018,
     author = {Gopal Datt and Anshika Mittal},
     title = {Operators induced by weighted {Toeplitz} and weighted {Hankel} operators},
     journal = {Novi Sad Journal of Mathematics},
     pages = {99 - 111},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2018},
     doi = {10.30755/NSJOM.07018},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.07018/}
}
TY  - JOUR
AU  - Gopal Datt
AU  - Anshika Mittal
TI  - Operators induced by weighted Toeplitz and weighted Hankel operators
JO  - Novi Sad Journal of Mathematics
PY  - 2018
SP  - 99 
EP  -  111
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.07018/
DO  - 10.30755/NSJOM.07018
ID  - 10.30755/NSJOM.07018
ER  - 
%0 Journal Article
%A Gopal Datt
%A Anshika Mittal
%T Operators induced by weighted Toeplitz and weighted Hankel operators
%J Novi Sad Journal of Mathematics
%D 2018
%P 99 - 111
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.07018/
%R 10.30755/NSJOM.07018
%F 10.30755/NSJOM.07018
Gopal Datt; Anshika Mittal. Operators induced by weighted Toeplitz and weighted Hankel operators. Novi Sad Journal of Mathematics, Tome 48 (2018) no. 2. doi : 10.30755/NSJOM.07018. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.07018/

Cité par Sources :