Strong Proximinality in Metric Spaces
Novi Sad Journal of Mathematics, Tome 47 (2017) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

In this paper, we extend the notions of strong proximinality and strong Chebyshevity available in Banach spaces to metric spaces and prove that an approximatively compact subset $W$ of a metric space $X$ is strongly proximinal. Moreover, the converse holds if the set of best approximants in $W$ to each point of the space $X$ is compact. It is proved that strongly Chebyshev sets are precisely the sets which are strongly proximinal and Chebyshev. Further, by extending the notion of local uniform convexity from Banach spaces to metric spaces, it is proved that a proximinal convex subset of a locally uniformly convex metric space is approximatively compact. As a consequence, it is observed that closed balls in a locally uniformly convex metric space are strongly Chebyshev.
Publié le :
DOI : 10.30755/NSJOM.05733
Classification : 41A50, 41A65, 46B20
Keywords: Strongly proximinal set, approximatively compact set, strongly Chebyshev set, locally uniformly convex space, metric projection
@article{10.30755/NSJOM.05733,
     author = {Sahil Gupta and T.D. Narang},
     title = {Strong {Proximinality} in {Metric} {Spaces}},
     journal = {Novi Sad Journal of Mathematics},
     pages = {107 - 116},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2017},
     doi = {10.30755/NSJOM.05733},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.05733/}
}
TY  - JOUR
AU  - Sahil Gupta
AU  - T.D. Narang
TI  - Strong Proximinality in Metric Spaces
JO  - Novi Sad Journal of Mathematics
PY  - 2017
SP  - 107 
EP  -  116
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.05733/
DO  - 10.30755/NSJOM.05733
ID  - 10.30755/NSJOM.05733
ER  - 
%0 Journal Article
%A Sahil Gupta
%A T.D. Narang
%T Strong Proximinality in Metric Spaces
%J Novi Sad Journal of Mathematics
%D 2017
%P 107 - 116
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.05733/
%R 10.30755/NSJOM.05733
%F 10.30755/NSJOM.05733
Sahil Gupta; T.D. Narang. Strong Proximinality in Metric Spaces. Novi Sad Journal of Mathematics, Tome 47 (2017) no. 2. doi : 10.30755/NSJOM.05733. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.05733/

Cité par Sources :