Generalized solutions to stochastic systems in Gelfand-Shilov spaces
Novi Sad Journal of Mathematics, Tome 45 (2015) no. 2.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

The Cauchy problem for systems of differential equations with multiplicative random perturbations in the form of infinite-dimensional Ito integrals is studied. For the systems correct by Petrovskii, conditionally correct and incorrect we point out Gelfand-Shilov spaces of generalized functions where a generalized solution coincides with a mild solution.
Publié le :
DOI : 10.30755/NSJOM.03468
Classification : 46F25, 47D06, 34K30, 60H40
Keywords: generalized function, $R$-semigroup, Wiener process, Ito integral, multiplier, convolution
@article{10.30755/NSJOM.03468,
     author = {Irina V. Melnikova and Uliana Alekseeva},
     title = {Generalized solutions to stochastic systems
in {Gelfand-Shilov} spaces},
     journal = {Novi Sad Journal of Mathematics},
     pages = {215 - 227},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2015},
     doi = {10.30755/NSJOM.03468},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.03468/}
}
TY  - JOUR
AU  - Irina V. Melnikova
AU  - Uliana Alekseeva
TI  - Generalized solutions to stochastic systems
in Gelfand-Shilov spaces
JO  - Novi Sad Journal of Mathematics
PY  - 2015
SP  - 215 
EP  -  227
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.03468/
DO  - 10.30755/NSJOM.03468
ID  - 10.30755/NSJOM.03468
ER  - 
%0 Journal Article
%A Irina V. Melnikova
%A Uliana Alekseeva
%T Generalized solutions to stochastic systems
in Gelfand-Shilov spaces
%J Novi Sad Journal of Mathematics
%D 2015
%P 215 - 227
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.03468/
%R 10.30755/NSJOM.03468
%F 10.30755/NSJOM.03468
Irina V. Melnikova; Uliana Alekseeva. Generalized solutions to stochastic systems
in Gelfand-Shilov spaces. Novi Sad Journal of Mathematics, Tome 45 (2015) no. 2. doi : 10.30755/NSJOM.03468. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.03468/

Cité par Sources :