Lorentz Hypersurfaces satisfying $\triangle \vec {H}= \alpha \vec {H}$ with complex eigen values
Novi Sad Journal of Mathematics, Tome 46 (2016) no. 1.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

In this paper, we study Lorentz hypersurface $M_{1}^{n}$ in $E_{1}^{n+1}$ satisfying $\triangle \vec {H}= \alpha \vec {H}$ with minimal polynomial $[(y-\lambda)^{2}+\mu^{2}](y-\lambda_{1})(y-\lambda_{n})$ having shape operator \eqref{2.11}. We prove that every such Lorentz hypersurface in $E_{1}^{n+1}$ having at most four distinct principal curvatures has a constant mean curvature.
Publié le :
DOI : 10.30755/NSJOM.02673
Classification : 53D12, 53C40, 53C42
Keywords: Pseudo-Euclidean space, Biharmonic submanifolds, Mean curvature vector
@article{10.30755/NSJOM.02673,
     author = {S. Deepika and Ram Shankar Gupta},
     title = {Lorentz {Hypersurfaces
satisfying} $\triangle \vec {H}=  \alpha \vec {H}$ with complex eigen
values},
     journal = {Novi Sad Journal of Mathematics},
     pages = {171 - 180},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2016},
     doi = {10.30755/NSJOM.02673},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.02673/}
}
TY  - JOUR
AU  - S. Deepika
AU  - Ram Shankar Gupta
TI  - Lorentz Hypersurfaces
satisfying $\triangle \vec {H}=  \alpha \vec {H}$ with complex eigen
values
JO  - Novi Sad Journal of Mathematics
PY  - 2016
SP  - 171 
EP  -  180
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.02673/
DO  - 10.30755/NSJOM.02673
ID  - 10.30755/NSJOM.02673
ER  - 
%0 Journal Article
%A S. Deepika
%A Ram Shankar Gupta
%T Lorentz Hypersurfaces
satisfying $\triangle \vec {H}=  \alpha \vec {H}$ with complex eigen
values
%J Novi Sad Journal of Mathematics
%D 2016
%P 171 - 180
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.02673/
%R 10.30755/NSJOM.02673
%F 10.30755/NSJOM.02673
S. Deepika; Ram Shankar Gupta. Lorentz Hypersurfaces
satisfying $\triangle \vec {H}=  \alpha \vec {H}$ with complex eigen
values. Novi Sad Journal of Mathematics, Tome 46 (2016) no. 1. doi : 10.30755/NSJOM.02673. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.02673/

Cité par Sources :