On $K$-contact Einstein manifolds
Novi Sad Journal of Mathematics, Tome 46 (2016) no. 1.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

The object of the present paper is to characterize $K$-contact Einstein manifolds satisfying the curvature condition $R\cdot C=Q(S,C),$ where $C$ is the conformal curvature tensor and $R$ the Riemannian curvature tensor. Next we study $K$-contact Einstein manifolds satisfying the curvature conditions $C\cdot S=0$ and $S\cdot C=0$, where $S$ is the Ricci tensor. Finally, we consider $K$-contact Einstein manifolds satisfying the curvature condition $Z\cdot C=0$, where $Z$ is the concircular curvature tensor.
Publié le :
DOI : 10.30755/NSJOM.02455
Classification : 53C15, 54D55
Keywords: $K$-contact manifold, Einstein manifold, $K$-contact Einstein manifold, conformal curvature tensor, concircular curvature tensor
@article{10.30755/NSJOM.02455,
     author = {U.C. De and Krishanu Mandal},
     title = {On $K$-contact {Einstein} manifolds},
     journal = {Novi Sad Journal of Mathematics},
     pages = {105 - 114},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2016},
     doi = {10.30755/NSJOM.02455},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.02455/}
}
TY  - JOUR
AU  - U.C. De
AU  - Krishanu Mandal
TI  - On $K$-contact Einstein manifolds
JO  - Novi Sad Journal of Mathematics
PY  - 2016
SP  - 105 
EP  -  114
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.02455/
DO  - 10.30755/NSJOM.02455
ID  - 10.30755/NSJOM.02455
ER  - 
%0 Journal Article
%A U.C. De
%A Krishanu Mandal
%T On $K$-contact Einstein manifolds
%J Novi Sad Journal of Mathematics
%D 2016
%P 105 - 114
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.02455/
%R 10.30755/NSJOM.02455
%F 10.30755/NSJOM.02455
U.C. De; Krishanu Mandal. On $K$-contact Einstein manifolds. Novi Sad Journal of Mathematics, Tome 46 (2016) no. 1. doi : 10.30755/NSJOM.02455. http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.02455/

Cité par Sources :