Regular polygonal systems
Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 157-171.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let M = M(Ω) be any triangle-free tiling of a planar polygonal region Ω with regular polygons. We prove that its face vector f(M) = (f3, f4, f5, …), its symmetry group S(M) and the tiling M itself are uniquely determined by its boundary angles code ca(M) = ca(Ω) = (t1, …, tr), a cyclical sequence of numbers ti describing the shape of Ω.
DOI : 10.26493/1855-3974.997.7ef
Keywords: Regular polygonal system, boundary code, face vector, symmetry group, reconstructibility from the boundary
@article{10_26493_1855_3974_997_7ef,
     author = {Jurij Kovi\v{c}},
     title = {Regular polygonal systems},
     journal = {Ars Mathematica Contemporanea},
     pages = {157--171},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2019},
     doi = {10.26493/1855-3974.997.7ef},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.997.7ef/}
}
TY  - JOUR
AU  - Jurij Kovič
TI  - Regular polygonal systems
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 157
EP  - 171
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.997.7ef/
DO  - 10.26493/1855-3974.997.7ef
LA  - en
ID  - 10_26493_1855_3974_997_7ef
ER  - 
%0 Journal Article
%A Jurij Kovič
%T Regular polygonal systems
%J Ars Mathematica Contemporanea
%D 2019
%P 157-171
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.997.7ef/
%R 10.26493/1855-3974.997.7ef
%G en
%F 10_26493_1855_3974_997_7ef
Jurij Kovič. Regular polygonal systems. Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 157-171. doi : 10.26493/1855-3974.997.7ef. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.997.7ef/

Cité par Sources :