Trees with small spectral gap
Ars Mathematica Contemporanea, Tome 14 (2018) no. 1, pp. 197-207.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Continuing the previous research, we consider trees with given number of vertices and minimal spectral gap. Using the computer search, we conjecture that this spectral invariant is minimized for double comet trees. The conjecture is confirmed for trees with at most 20 vertices; simultaneously no counterexamples are encountered. We provide theoretical results concerning double comets and putative trees that minimize the spectral gap. We also compare the spectral gap of regular graphs and paths. Finally, a sequence of inequalities that involve the same invariant is obtained.
DOI : 10.26493/1855-3974.992.68d
Keywords: Graph eigenvalues, double comet, extremal values, numerical computation
@article{10_26493_1855_3974_992_68d,
     author = {Ivana Jovovi\'c and Tamara Koledin and Zoran Stani\'c},
     title = {Trees with small spectral gap},
     journal = {Ars Mathematica Contemporanea},
     pages = {197--207},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2018},
     doi = {10.26493/1855-3974.992.68d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.992.68d/}
}
TY  - JOUR
AU  - Ivana Jovović
AU  - Tamara Koledin
AU  - Zoran Stanić
TI  - Trees with small spectral gap
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 197
EP  - 207
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.992.68d/
DO  - 10.26493/1855-3974.992.68d
LA  - en
ID  - 10_26493_1855_3974_992_68d
ER  - 
%0 Journal Article
%A Ivana Jovović
%A Tamara Koledin
%A Zoran Stanić
%T Trees with small spectral gap
%J Ars Mathematica Contemporanea
%D 2018
%P 197-207
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.992.68d/
%R 10.26493/1855-3974.992.68d
%G en
%F 10_26493_1855_3974_992_68d
Ivana Jovović; Tamara Koledin; Zoran Stanić. Trees with small spectral gap. Ars Mathematica Contemporanea, Tome 14 (2018) no. 1, pp. 197-207. doi : 10.26493/1855-3974.992.68d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.992.68d/

Cité par Sources :