Congruent triangles in arrangements of lines
Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 359-373.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We study the maximum number of congruent triangles in finite arrangements of ℓ lines in the Euclidean plane. Denote this number by f(ℓ). We show that f(5) = 5 and that the construction realizing this maximum is unique, f(6) = 8, and f(7) = 14. We also discuss for which integers c there exist arrangements on ℓ lines with exactly c congruent triangles. In parallel, we treat the case when the triangles are faces of the plane graph associated to the arrangement (i.e. the interior of the triangle has empty intersection with every line in the arrangement). Lastly, we formulate four conjectures.
DOI : 10.26493/1855-3974.982.6d6
Keywords: Arrangement, congruent triangles
@article{10_26493_1855_3974_982_6d6,
     author = {Carol T. Zamfirescu},
     title = {Congruent triangles in arrangements of lines},
     journal = {Ars Mathematica Contemporanea},
     pages = {359--373},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     doi = {10.26493/1855-3974.982.6d6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.982.6d6/}
}
TY  - JOUR
AU  - Carol T. Zamfirescu
TI  - Congruent triangles in arrangements of lines
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 359
EP  - 373
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.982.6d6/
DO  - 10.26493/1855-3974.982.6d6
LA  - en
ID  - 10_26493_1855_3974_982_6d6
ER  - 
%0 Journal Article
%A Carol T. Zamfirescu
%T Congruent triangles in arrangements of lines
%J Ars Mathematica Contemporanea
%D 2018
%P 359-373
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.982.6d6/
%R 10.26493/1855-3974.982.6d6
%G en
%F 10_26493_1855_3974_982_6d6
Carol T. Zamfirescu. Congruent triangles in arrangements of lines. Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 359-373. doi : 10.26493/1855-3974.982.6d6. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.982.6d6/

Cité par Sources :