Improving upper bounds for the distinguishing index
Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 259-274.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The distinguishing index of a graph G, denoted by Dʹ(G), is the least number of colours in an edge colouring of G not preserved by any non-trivial automorphism. We characterize all connected graphs G with Dʹ(G) ≥ Δ (G). We show that Dʹ(G) ≤ 2 if G is a traceable graph of order at least seven, and Dʹ(G) ≤ 3 if G is either claw-free or 3-connected and planar. We also investigate the Nordhaus-Gaddum type relation: 2 ≤ Dʹ(G) + Dʹ(‾G) ≤ max{Δ (G), Δ (‾G)} + 2 and we confirm it for some classes of graphs.
DOI : 10.26493/1855-3974.981.ff0
Keywords: Edge colouring, symmetry breaking in graph, distinguishing index, claw-free graph, planar graph
@article{10_26493_1855_3974_981_ff0,
     author = {Monika Pil\'sniak},
     title = {Improving upper bounds for the distinguishing index},
     journal = {Ars Mathematica Contemporanea},
     pages = {259--274},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     doi = {10.26493/1855-3974.981.ff0},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.981.ff0/}
}
TY  - JOUR
AU  - Monika Pilśniak
TI  - Improving upper bounds for the distinguishing index
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 259
EP  - 274
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.981.ff0/
DO  - 10.26493/1855-3974.981.ff0
LA  - en
ID  - 10_26493_1855_3974_981_ff0
ER  - 
%0 Journal Article
%A Monika Pilśniak
%T Improving upper bounds for the distinguishing index
%J Ars Mathematica Contemporanea
%D 2017
%P 259-274
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.981.ff0/
%R 10.26493/1855-3974.981.ff0
%G en
%F 10_26493_1855_3974_981_ff0
Monika Pilśniak. Improving upper bounds for the distinguishing index. Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 259-274. doi : 10.26493/1855-3974.981.ff0. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.981.ff0/

Cité par Sources :