Large circulant graphs of fixed diameter and arbitrary degree
Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 275-291.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We consider the degree-diameter problem for undirected and directed circulant graphs. To date, attempts to generate families of large circulant graphs of arbitrary degree for a given diameter have concentrated mainly on the diameter 2 case. We present a direct product construction yielding improved bounds for small diameters and introduce a new general technique for “stitching” together circulant graphs which enables us to improve the current best known asymptotic orders for every diameter. As an application, we use our constructions in the directed case to obtain upper bounds on the minimum size of a subset A of a cyclic group of order n such that the k-fold sumset kA is equal to the whole group. We also present a revised table of largest known circulant graphs of small degree and diameter.
DOI : 10.26493/1855-3974.969.659
Keywords: Degree-diameter problem, Cayley graphs, circulant graphs, sumsets
@article{10_26493_1855_3974_969_659,
     author = {David Bevan and Grahame Erskine and Robert Lewis},
     title = {Large circulant graphs of fixed diameter and arbitrary degree},
     journal = {Ars Mathematica Contemporanea},
     pages = {275--291},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     doi = {10.26493/1855-3974.969.659},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.969.659/}
}
TY  - JOUR
AU  - David Bevan
AU  - Grahame Erskine
AU  - Robert Lewis
TI  - Large circulant graphs of fixed diameter and arbitrary degree
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 275
EP  - 291
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.969.659/
DO  - 10.26493/1855-3974.969.659
LA  - en
ID  - 10_26493_1855_3974_969_659
ER  - 
%0 Journal Article
%A David Bevan
%A Grahame Erskine
%A Robert Lewis
%T Large circulant graphs of fixed diameter and arbitrary degree
%J Ars Mathematica Contemporanea
%D 2017
%P 275-291
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.969.659/
%R 10.26493/1855-3974.969.659
%G en
%F 10_26493_1855_3974_969_659
David Bevan; Grahame Erskine; Robert Lewis. Large circulant graphs of fixed diameter and arbitrary degree. Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 275-291. doi : 10.26493/1855-3974.969.659. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.969.659/

Cité par Sources :