A decomposition for Markov processes at an independent exponential time
Ars Mathematica Contemporanea, Tome 12 (2017) no. 1, pp. 51-65.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The path of Markov process X run up to an independent exponential random time Sθ can be decomposed into the part prior to the last exit time from a point before Sθ, and the remainder up to Sθ. In this paper the laws of the two segments are identified under suitable assumptions using excursion theory.
DOI : 10.26493/1855-3974.943.2a3
Keywords: Markov proceses, last exit decompositions, excursion theory
@article{10_26493_1855_3974_943_2a3,
     author = {Mihael Perman},
     title = {A decomposition for {Markov} processes at an independent exponential time},
     journal = {Ars Mathematica Contemporanea},
     pages = {51--65},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     doi = {10.26493/1855-3974.943.2a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.943.2a3/}
}
TY  - JOUR
AU  - Mihael Perman
TI  - A decomposition for Markov processes at an independent exponential time
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 51
EP  - 65
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.943.2a3/
DO  - 10.26493/1855-3974.943.2a3
LA  - en
ID  - 10_26493_1855_3974_943_2a3
ER  - 
%0 Journal Article
%A Mihael Perman
%T A decomposition for Markov processes at an independent exponential time
%J Ars Mathematica Contemporanea
%D 2017
%P 51-65
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.943.2a3/
%R 10.26493/1855-3974.943.2a3
%G en
%F 10_26493_1855_3974_943_2a3
Mihael Perman. A decomposition for Markov processes at an independent exponential time. Ars Mathematica Contemporanea, Tome 12 (2017) no. 1, pp. 51-65. doi : 10.26493/1855-3974.943.2a3. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.943.2a3/

Cité par Sources :