On t-fold covers of coherent configurations
Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 397-413.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We introduce the covering configuration induced by a regular weight defined on a coherent configuration. This construction generalizes the well-known equivalence of regular two-graphs and antipodal double covers of complete graphs. It also recovers, as special cases, the rank 6 association schemes connected with regular 3-graphs, and certain extended Q-bipartite doubles of cometric association schemes. We articulate sufficient conditions on the parameters of a coherent configuration for it to arise as a covering configuration.
DOI : 10.26493/1855-3974.938.1ae
Keywords: Association scheme, coherent configuration, regular weight, double cover, two-graph, t-graph
@article{10_26493_1855_3974_938_1ae,
     author = {Alyssa Sankey},
     title = {On t-fold covers of coherent configurations},
     journal = {Ars Mathematica Contemporanea},
     pages = {397--413},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     doi = {10.26493/1855-3974.938.1ae},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.938.1ae/}
}
TY  - JOUR
AU  - Alyssa Sankey
TI  - On t-fold covers of coherent configurations
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 397
EP  - 413
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.938.1ae/
DO  - 10.26493/1855-3974.938.1ae
LA  - en
ID  - 10_26493_1855_3974_938_1ae
ER  - 
%0 Journal Article
%A Alyssa Sankey
%T On t-fold covers of coherent configurations
%J Ars Mathematica Contemporanea
%D 2018
%P 397-413
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.938.1ae/
%R 10.26493/1855-3974.938.1ae
%G en
%F 10_26493_1855_3974_938_1ae
Alyssa Sankey. On t-fold covers of coherent configurations. Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 397-413. doi : 10.26493/1855-3974.938.1ae. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.938.1ae/

Cité par Sources :