On the largest subsets avoiding the diameter of (0, ±1)-vectors
Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let Lmkl ⊂ Rm + k + l be the set of vectors which have m of entries  − 1, k of entries 0, and l of entries 1. In this paper, we investigate the largest subset of Lmkl whose diameter is smaller than that of Lmkl. The largest subsets for m = 1, l = 2, and any k will be classified. From this result, we can classify the largest 4-distance sets containing the Euclidean representation of the Johnson scheme J(9, 4). This was an open problem in Bannai, Sato, and Shigezumi (2012).
DOI : 10.26493/1855-3974.935.4e0
Keywords: The Erdős-Ko-Rado theorem, s-distance set, diameter graph, independent set, extremal set theory
@article{10_26493_1855_3974_935_4e0,
     author = {Saori Adachi and Hiroshi Nozaki},
     title = {On the largest subsets avoiding the diameter of (0, \ensuremath{\pm}1)-vectors},
     journal = {Ars Mathematica Contemporanea},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     doi = {10.26493/1855-3974.935.4e0},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.935.4e0/}
}
TY  - JOUR
AU  - Saori Adachi
AU  - Hiroshi Nozaki
TI  - On the largest subsets avoiding the diameter of (0, ±1)-vectors
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 1
EP  - 13
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.935.4e0/
DO  - 10.26493/1855-3974.935.4e0
LA  - en
ID  - 10_26493_1855_3974_935_4e0
ER  - 
%0 Journal Article
%A Saori Adachi
%A Hiroshi Nozaki
%T On the largest subsets avoiding the diameter of (0, ±1)-vectors
%J Ars Mathematica Contemporanea
%D 2017
%P 1-13
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.935.4e0/
%R 10.26493/1855-3974.935.4e0
%G en
%F 10_26493_1855_3974_935_4e0
Saori Adachi; Hiroshi Nozaki. On the largest subsets avoiding the diameter of (0, ±1)-vectors. Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 1-13. doi : 10.26493/1855-3974.935.4e0. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.935.4e0/

Cité par Sources :