A partial generalization of the Livingstone-Wagner Theorem
Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 207-215.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

For a transitive permutation group G on a finite set Ω, the Livingstone–Wagner Theorem states that if G is k-homogeneous then G is (k − 1)-transitive. It can be conjectured that the number of G-orbits on k-subsets of Ω is greater than or equal to the one on ordered (k − 1)-tuples of Ω, if |Ω| is sufficiently large. For the simplest case k = 3, we prove this by establishing a result on edge-colorings of complete digraphs.
DOI : 10.26493/1855-3974.92.46f
Keywords: Permutation group, Tranisitvity, Livingstone--Wagner Theorem
@article{10_26493_1855_3974_92_46f,
     author = {Yasuhiro Nakashima},
     title = {A partial generalization of the {Livingstone-Wagner} {Theorem}},
     journal = {Ars Mathematica Contemporanea},
     pages = {207--215},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.26493/1855-3974.92.46f},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.92.46f/}
}
TY  - JOUR
AU  - Yasuhiro Nakashima
TI  - A partial generalization of the Livingstone-Wagner Theorem
JO  - Ars Mathematica Contemporanea
PY  - 2009
SP  - 207
EP  - 215
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.92.46f/
DO  - 10.26493/1855-3974.92.46f
LA  - en
ID  - 10_26493_1855_3974_92_46f
ER  - 
%0 Journal Article
%A Yasuhiro Nakashima
%T A partial generalization of the Livingstone-Wagner Theorem
%J Ars Mathematica Contemporanea
%D 2009
%P 207-215
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.92.46f/
%R 10.26493/1855-3974.92.46f
%G en
%F 10_26493_1855_3974_92_46f
Yasuhiro Nakashima. A partial generalization of the Livingstone-Wagner Theorem. Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 207-215. doi : 10.26493/1855-3974.92.46f. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.92.46f/

Cité par Sources :