A note on the directed genus of K_n,n,n and K_n
Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 375-385.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

It is proved that a complete graph Kn can have an orientation whose minimum directed genus is ⌈1⁄12(n - 3)(n - 4)⌉ if and only if n ≡ 3, 7 (mod 12). This answers a question of Bonnington et al. by using a method different from current graphs. It is also proved that a complete symmetric tripartite graph Kn, n, n has an orientation whose minimum directed genus is 1⁄2(n - 1)(n - 2).
DOI : 10.26493/1855-3974.911.3b4
Keywords: Digraph, complete tripartite graph, directed genus, surfaces
@article{10_26493_1855_3974_911_3b4,
     author = {Rong-Xia Hao},
     title = {A note on the directed genus of {K_n,n,n} and {K_n}},
     journal = {Ars Mathematica Contemporanea},
     pages = {375--385},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     doi = {10.26493/1855-3974.911.3b4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.911.3b4/}
}
TY  - JOUR
AU  - Rong-Xia Hao
TI  - A note on the directed genus of K_n,n,n and K_n
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 375
EP  - 385
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.911.3b4/
DO  - 10.26493/1855-3974.911.3b4
LA  - en
ID  - 10_26493_1855_3974_911_3b4
ER  - 
%0 Journal Article
%A Rong-Xia Hao
%T A note on the directed genus of K_n,n,n and K_n
%J Ars Mathematica Contemporanea
%D 2018
%P 375-385
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.911.3b4/
%R 10.26493/1855-3974.911.3b4
%G en
%F 10_26493_1855_3974_911_3b4
Rong-Xia Hao. A note on the directed genus of K_n,n,n and K_n. Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 375-385. doi : 10.26493/1855-3974.911.3b4. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.911.3b4/

Cité par Sources :