Counting maximal matchings in linear polymers
Ars Mathematica Contemporanea, Tome 11 (2016) no. 2, pp. 255-276.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A matching M in a graph G is maximal if it cannot be extended to a larger matching in G. In this paper we show how several chemical and technical problems can be successfully modeled in terms of maximal matchings. We introduce the maximal matching polynomial and study its basic properties. Then we enumerate maximal matchings in several classes of graphs made by a linear or cyclic concatenation of basic building blocs. We also count maximal matchings in joins and corona products of some classes of graphs.
DOI : 10.26493/1855-3974.851.167
Keywords: Maximal matching, maximal matching polynomial, cactus graph, cactus chain, Padovan numbers, Perrin numbers, corona product
@article{10_26493_1855_3974_851_167,
     author = {Tomislav Do\v{s}li\'c and Ivana Zubac},
     title = {Counting maximal matchings in linear polymers},
     journal = {Ars Mathematica Contemporanea},
     pages = {255--276},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     doi = {10.26493/1855-3974.851.167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.851.167/}
}
TY  - JOUR
AU  - Tomislav Došlić
AU  - Ivana Zubac
TI  - Counting maximal matchings in linear polymers
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 255
EP  - 276
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.851.167/
DO  - 10.26493/1855-3974.851.167
LA  - en
ID  - 10_26493_1855_3974_851_167
ER  - 
%0 Journal Article
%A Tomislav Došlić
%A Ivana Zubac
%T Counting maximal matchings in linear polymers
%J Ars Mathematica Contemporanea
%D 2016
%P 255-276
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.851.167/
%R 10.26493/1855-3974.851.167
%G en
%F 10_26493_1855_3974_851_167
Tomislav Došlić; Ivana Zubac. Counting maximal matchings in linear polymers. Ars Mathematica Contemporanea, Tome 11 (2016) no. 2, pp. 255-276. doi : 10.26493/1855-3974.851.167. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.851.167/

Cité par Sources :